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Abstract 
 

I explain carried interest as a mechanism to induce incentive compatible fund leverage. Fee, leverage 
and target return data are used to calibrate the model. Steps in the modeling process include 
developing a tradeoff model of fund capital structure that pits alpha against the costs of financial 
distress. GPs with convex incentive fee payoff functions limit debt even in the absence of distress costs. 
LPs optimize by endogenously targeting fund returns. Catch-up fee provisions enable high-skill GPs 
to extract fees while hitting LP return targets.  
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I. Introduction 

What function does the private equity (PE) carried interest contract serve when GPs are endowed with skill and 

long-term career (reputational) concerns exist to incentivize effort and performance in the shorter-run? To 

address this question I develop a theory of PE fund capital structure that links directly to incentive fee 

contracting practices commonly utilized in the PE sector. In essence my argument is that the carried interest 

contract functions as a complement to indirect compensation incentives, with carried interest used to create 

appropriate fund capital structuring incentives while also generating acceptable target returns to LP investors. 

To motivate model development, I analyze data from the private equity real estate (PERE) sector that exists 

within the real asset PE category. More specifically, I analyze closed-end Value-Add and Opportunity PERE 

funds. These funds have gained in prominence over the past 20 years, and now attract more capital than any 

other category of closed-end funds in the real estate PE part of the market.1 They are the commercial real estate 

equivalent of buyout funds, where GP-sponsors take underperforming assets and “turn them around” through 

repositioning and redevelopment. Focusing on a narrow category of funds that exist within a prescribed asset 

class helps ensure consistency and comparability in the data, and sharpens assessment when it comes time to 

calibrate the model. 

There are three main categories of interest in my data: incentive fee contract terms, fund leverage levels and 

fund return targets disclosed in offering documents. I find a median carry hurdle rate of 9.0%, which varies from 

and is slightly higher than the commonly cited 8.0% rate. There is also small but meaningful variation around 

the 9.0% median rate, found to be in the 7.0% to 12.0% range. I further document an almost invariant carried 

interest share of 20.0%, which is consistent with prior findings (e.g., Metrick and Yasuda (2010)). Catch-up fee 

provisions are not consistently applied in this sector. When they are applied, catch-ups are often set at a 50.0% 

rate rather than the commonly cited 100% rate. I therefore find that the PERE incentive fee contract is calibrated 

to a greater extent than previously documented, primarily through the catch-up provision. 

                                                           
1 See, for example, PREA Survey of Investor Intentions, 2021. 
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Fund leverage ranges between 50.0% and 75.0% in the data, with an inter-quartile range of 60%-70%, a mean of 

63.9%, and a median as well as mode of 65.0%. Net-of-fee target returns (forecasted IRRs) generally range 

between 13.0% and 20.0%, with a mean of 16.7%. An analysis of the differences between gross- and net-of-fee 

target returns indicates a fee drag of approximately 3.5% to 4.0%. Finally, I document positive relations between 

the carry hurdle rate and target returns, as well as between leverage and target returns. This in turn implies a 

positive relation between the carry hurdle rate and leverage. 

For modeling purposes these stylized empirical results lead me to treat the incentive fee contract in a quasi-

endogenous manner. To start I take the “9-20” incentive contract as given, and examine the model for fit as it 

relates to fund leverage and return targets. Then later in the paper I endogenize the GP’s incentive contract, 

primarily in the context of LP return targeting and GP skill heterogeneity. Endogenous LP return targeting 

results from an optimization that constrains GP net-of-fee fund performance to at least match that obtainable in a 

setting with zero fees and zero-alpha asset returns. In these cases modeled fund leverage and target returns are 

verified to reside in empirically documented ranges and in appropriate relation to other variables.  

The first step in the modeling process is to develop a model of PE debt costs. In the model, alpha is traded off 

against costs of financial distress. Debt as a result can be cheap or expensive relative to the frictionless debt cost 

benchmark. Whenever financial distress costs are positive, there exists an endogenous upper bound on debt 

funding at which the marginal cost of debt becomes infinite.  

The next step in the modeling process is to consider the GP’s fund leverage decision. Here the GP’s objective is 

to maximize expected incentive fee payments subject to satisfying participation requirements. I show that fund 

leverage is set to equalize the marginal costs of debt and preferred equity. Unlike canonical relations in which 

the cost of equity increases in leverage, in PE the cost of LP (preferred) equity is invariant as a function of 

leverage. Cheap equity limits fund leverage even when financial distress costs are zero and even though the 

GP’s carried interest payoff function is convex. Incentive compatible fund leverage in this case does not depend 

on the carried interest share percentage. This separation result helps explain invariance in the carried interest 

share percentage (almost universally set at 20.0%), as the GP’s fund leverage choice problem only depends on 

the carried interest hurdle rate.  
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This debt-equity tradeoff raises an issue of how fundraising occurs. In my baseline model I follow Axelson, 

Stromberg and Weisbach (2009) by raising equity first and then issuing debt at the time of asset acquisition. In 

this case, an extra dollar of equity implies one dollar less of debt financing. I then consider an alternative 

fundraising model, whereby the GP raises equity first and then issues debt as a ratchet to fund asset acquisition. 

Here there are no prescribed limits on fund asset size. This fundraising model creates a different tradeoff, where 

fund asset size, although larger than in the baseline case, is nevertheless finite.  The tradeoff in this case is the 

marginal cost of debt versus the marginal benefit of increasing the asset pool size, inclusive of the value-

enhancing effects of alpha.  

The third step in the modeling process is to determine the LP’s target net-of-fee returns on committed capital. I 

then select model parameter values based on a careful analysis of moments and relations documented in the 

relevant empirical literature. Taking the standard, empirically observed 9-20 incentive fee contract as given, in 

the base-case the model generates fund leverage of 63.1%. This compares to PERE fund leverage in the data that 

averages 63.9%. Modeled fund leverage ranges from 59.4% given a low-alpha fund manager to 67.7% when 

fund assets are low volatility. This range of fund leverage outcomes centers on and closely conforms to 

empirically observed fund leverage levels. The base-case model also generates net-of-fee target returns that 

range between 14.6% in the case of a low-skill fund manager to 19.2% in the case of a high-skill fund manager. 

Fee drag ranges from 3.7% to 4.5%. These return and fee value ranges all match up well with the data. 

As a last step to the analysis I augment the baseline carried interest contract to incorporate catch-up fees. This is 

done in the context of LP return targeting, a process that endogenously determines not only the return target as a 

constraint on fund returns but also a leverage target that serves as an upper bound on debt funding. When 

utilizing base-case parameter values, my model generates a return target of 16.72% and a fund leverage target of 

64.95%, both of which almost exactly match means (in the case of target return) as well as medians and modes 

(in the case of fund leverage) documented in the data.  

Catch-up fees are shown to further lower the cost of equity capital to reduce fund leverage levels preferred by 

the GP. Return and fund leverage targets then serve as constraints to be satisfied by the GP who is optimizing 

carried interest based on the dual choice of fund leverage and the catch-up rate. GP skill heterogeneity is 
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highlighted, with three ranges of outcomes. Low skill GPs are unable to include a catch-up fee provision, since 

they cannot simultaneously satisfy return target and fund leverage constraints. Moderate skill GPs increase fund 

leverage to the target upper bound, and calibrate the catch-up rate to just satisfy the return target constraint. High 

skill GPs charge the full catch-up rate, decreasing fund leverage to further increase fees at the expense of LP 

returns.  

Thus, higher-skill fund managers are able to implement the catch-up fee provision and simultaneously meet the 

LP’s benchmark return requirement, while lower-skill managers cannot. In the PERE data, leverage clusters at 

65 percent, with few funds charging the full catch-up rate. This is predicted by my model when alpha is within a 

limited range above zero, which it is according to Gupta and Van Nieuwerburgh (2021). In contrast, with PE 

buyout funds in which alpha estimates are higher, full catch-up fee rates are common and fund leverage varies 

more (see, e.g., Brown et al. (2020)).   

This paper relates to several distinct literatures that have emerged in PE and alternative investments. One strand 

focuses on learning about GP skill and indirect incentive compensation that happens when “good current 

performance increases future inflows of capital, leading to higher fees” in the future (see, e.g., Chung, et al. 

(2012) addressing PE and Lim, Sensoy and Weisbach (2016) addressing hedge funds). In these studies indirect 

compensation is found to be at least as important as current direct compensation. But the relative importance of 

indirect compensation actually deepens the carried interest compensation puzzle, since it implies even less need 

to provide any form of incentive compensation on current fund performance. My model, which links incentive 

compensation to fund capital structure choice, provides a bridge to the longer-run problem of maximizing 

lifetime earnings through performance. This in turn allows us to better understand how the GP optimizes fee 

income over its entire lifetime. It does so through two different channels: 1) The fund performance channel that 

creates future fee income, and 2) The fund capital structure channel that satisfies contemporaneous LP return 

requirements and optimizes incentive fee payments with respect to the current fund. 

A second strand relates to models of alternative investment that prominently feature both fee and fund capital 

structure in the analysis. In this regard I most directly draw from Metrick and Yasuda (MY, 2010), Axelson, 

Stromberg and Weisbach (ASW,2009), Lan, Wang and Yang (LWY,2013) and Sorensen, Wang and Yang 
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(SWY,2014). As with MY, ASW and SWY, I consider a closed-end (finite life) PE fund structure, whereas 

LWY focuses on hedge funds with an open-end (infinite life) structure. I follow LWY by incorporating both 

alpha and costs of fund liquidation into analyzing optimal debt funding policy. LWY is, however, a dynamic 

model that incorporates high-water marks whereas my setting is more tractable, focused on the closed-end PE 

carried interest contract. In some ways my model structure is closest to SWY, where I extend their baseline 

closed-end fund model by incorporating costs of financial distress as well as endogenizing fund capital structure. 

SWY’s focus is more on the effects of illiquidity risk on fund valuation, whereas my emphasis is more on 

explaining fund leverage and how it links to various components of the incentive fee compensation contract. 

ASW go further than I do by fully endogenizing the convex compensation structure in PE, as well as showing 

how fundraising/fund capital structure can be used as a commitment device. In comparison, I closely follow 

their prescribed fundraising structure and instead focus on developing a model that can be calibrated to the data 

to explain observed fund capital structures as they depend on the compensation contract.  

A third strand of literature starts with Carpenter (2000) and Ross (2004), who show there are limits to risk 

ratcheting with convex compensation contracts when managers are risk averse.2 Panageus and Westerfied 

(2009) and Lin, Wang and Yang (2013) extend the result to consideration of high-water mark compensation 

contracts with risk neutral agents and infinite time horizons. In my extended model of PE fundraising that allows 

for leverage ratcheting, I show there are limits to fund size, and hence debt in the fund’s capital structure, even 

when managers are risk neutral, not impatient, exposed to no costs of financial distress, optimizing over a finite 

horizon, and are compensated based on a standard convex carried interest contract. The result shows the 

parameters of the convex compensation contract are, in fact, incidental, as long as there is some proportional 

sharing of residual cash flows. What matters is the marginal cost of debt, which increases without bound with 

fund leverage, versus returns on new investment funded by the debt, which are always finite.  

Another strand of the literature focuses on return targeting by LPs, which I fold into both my empirical and 

theoretical analysis. Return targeting reflects a primary focus by LPs on absolute investment return with less 

                                                           
2 There is an earlier literature that allows for hedging the compensation contract, showing that the fund managers have 
incentives to implement as much leverage as possible. See, e.g., Grinblatt and Titman (1989). 
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focus on the risks of investment.3 Those who have weighed in on the breakdown of canonical risk-return 

relations in PE include Gompers, Kaplan and Mukharlyamov (2016), Korteweg (2019), Andonov, Bauer and 

Cremers (2017), Andonov and Rauh (2019) and Bodnaruk and Simonov (2016). I add to the literature by 

developing a method in the spirit of Berk and Green (2004) that endogenously generates both a return and fund 

leverage target for LPs that compete for investment opportunities. These targets function as constraints that must 

be satisfied by the GP in the design of its compensation contract.  

The closest paper to mine in the PERE literature is Shilling and Wurtzbach (2012), who conduct an empirical 

analysis of PE real estate funds. They find that managers target returns and that fund leverage is “high regardless 

of market conditions.” My model similarly incorporates return targeting by LP’s, and generates highly 

consistent results. But my model offers significantly more structure that directly links compensation to fund 

leverage to explain the “consistently high leverage” observed with Value-Add and Opportunity PERE funds. 

The organization of the paper is as follows. In section II I present and analyze new data on PERE Value-Add 

and Opportunity funds. In section III I introduce the formal model, first developing a theory of debt pricing that 

pits alpha against costs of financial distress. In section IV I introduce incentive fees and the GP’s leverage 

choice problem. LP return measurement is considered in section V, followed by a careful selection of model 

parameters to calibrate and assess the model. LP return targeting, GP skill heterogeneity and the catch-up fee 

provision are analyzed in section VI. The paper concludes in section VII. 

II.  Preliminaries 

II.A. Some New Empirical Facts and Relations 

PE incentive contracting fee structure and its apparent lack of meaningful variation across funds and GP-

sponsors remains a puzzle.4 One reason for this is that detailed incentive fee and fund leverage data have been 

                                                           
3 Axelson, Sorensen and Stromberg (2014) express return targeting in a slightly different way, referring to it as the “β 
puzzle”. They state: “These studies suggest that buyout funds can acquire regular companies with equity β around 1.0 and 
then increase their leverage six-fold, yet leave systematic risk unchanged.”  
4 See, e.g., Metrick and Yasuda (2010) and Lim, Sensoy and Weisbach (2016).  
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hard to come by, particularly in combination. My plan in this section is introduce new data on fee structures, 

capital structures and performance targets for closed-end private equity real estate (PERE) funds.  

Why analyzed PERE fund data? Assets that populate PERE funds are commercial real estate properties that are 

relatively homogeneous in terms of their risk-return characteristics. Fund managers also rely primarily on 

secured non-recourse debt that is collateralized by fund assets as a source of debt funding, which simplifies the 

analysis. There are two categories of PERE funds that resemble buyout funds: Value-Add and Opportunity 

funds.  Assets comprising these funds are often described as requiring asset repositioning and refurbishing, as 

well as significant planning, development and leasing, along with elevated operating risks. Although Value-Add 

funds are considered somewhat less risky than Opportunity funds from an investment and operating perspective, 

they have performed similarly over time, deploy similar levels of fund leverage and attract similar types of 

institutional capital for fund investment. 

In focusing on closed-end PERE funds, I draw from two separate data sources. My first data source is Real 

Estate Alert.5 These data provide information on the components of the GP’s fee contract, as well as the fund’s 

return target as measured by forecasted IRR. Fund vintage dates range from 2004 through 2020.6 Summary 

statistics on management fees, the carried interest hurdle rate, the carried interest share percentage, and the 

catch-up rate are reported in columns (1) through (4) of Table 1.  

Table 1 - Summary Statistics: Real Estate Alert Data  

 
Statistic 

Mgmt 
Fee 
(1) 

Carry 
Hurdle 

(2) 

Carry 
Interest 

(3) 

Catch-Up 
Rate 
(4) 

Target 
IRR 
(5) 

N 254 254 254 254 254 
Mean 1.56% 8.92% 20.4% 41.0% 16.71% 

Median 1.50% 9.00% 20.0% 50.0% 16.00% 
S.D. 0.27% 1.31% 2.64% 30.4% 2.69% 
Min 0.40% 6.00% 10.0% 0.00% 12.00% 
Max 2.50% 20.00% 40.0% 100.00% 25.00% 

        

                                                           
5 Real Estate Alert is wholly owned by Green Street, an independent REIT analysis firm located in southern CA.  
6 Open-end funds and funds with non-US investors were eliminated from the sample. This left 282 observations with 
management fee and target IRR information, and 254 observations with carry hurdle, carried interest share and catch-up 
rate information. I trimmed the sample to 254 observations with consistent information across all five variables.  
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Management fees cluster fairly tightly around 1.50%. Interestingly, the carry hurdle in these data centers on 

9.0%, rather than 8.0%, as commonly cited in the literature. My discussions with industry participants indicate 

that some believe the 9.0% hurdle value derives from long-run before-fee average returns to the NCREIF index 

of open-end core CRE funds. Carry hurdle values also display some variation. The minimum and maximum 

carry hurdle values are 6.0% and 20.0%, respectively. One hundred and two out of 254 observations (40.2%) are 

at a 9.0% carry hurdle, 67 observations (26.4%) at 8.0% and 55 (21.7%) at 10.0%.  

In comparison, consistent with findings of Metrick and Yasuda (2010) and others, the carried interest share 

centers at 20.0% with little variation around the median value. In particular, 235 of 254 funds (92.5%) specify 

20.0% as the carried interest share. Finally, the literature suggests that most PE funds employ 100% catch-up 

provisions (Metrick and Yasuda (2010), Robinson and Sensoy (2013)). In contrast, in this PERE fund data I 

observe fewer 100% catch-up provisions, as well as substantial variation in catch-up rates. Sixty-seven out of 

254 funds (26.4%) do not use a catch-up provision at all, while 94 (37.0%) are set at 50% and only 14 (5.5%) 

are set at 100%.  

Column (5) of Table 1 contains summary statistics for the net-of-fee target IRR. Target returns are set prior to 

the start of fund operations. Here the mean target return is 16.71%, with a minimum of 12.00% and a maximum 

of 25.00%. The vast majority of observations (86.6%) are between 14.0% and 20.0% (inclusive).  

My second source of data is Preqin. Preqin is a well-known PE data provider. I was able to obtain select 

information from Preqin on PERE Value-Add and Opportunity fund leverage, a variable missing from the Real 

Estate Alert data. I was also able to obtain detailed information on IRR targets on both a gross-of-fee and net-of-

fee basis, which allows me to estimate fee drag as the difference between targeted gross-of-fee and net-of-fee 

returns. Fund vintage dates are available from 1994 through 2020. However, to enhance comparability with the 

Real Estate Alert data I only consider funds with vintage dates from 2004-2020. I also trim two funds that are 

significant outliers with respect to fund leverage, eliminating one fund with 0.0% leverage and one fund with 

90.0% leverage. This leaves me with a total of 1061 observations. These data, however, contain a large number 

of missing observations scattered across all variables, which results in much smaller samples of matched (and 

even unmatched) observations.  
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Table 2 reports summary statistics for the Preqin data. Columns (1) and (3) contain leverage (debt-to-total fund 

asset book value) results, while columns (2) and (4) contain fee drag results. The difference between results 

reported in columns (1) and (2) versus (3) and (4) is that the former is based on unmatched sample data, whereas 

the latter rely on matched sample data.  

Table 2 – Summary Statistics: Preqin Data 

 
Statistic 

Leverage 
Unmatched 

(1) 

Fee Drag 
Unmatched 

(2) 

Leverage 
Matched 

(3) 

Fee Drag 
Matched 

(4) 
N 364 361 115 115 

Mean 63.96% 3.76% 62.37% 3.80% 
Median 65.00% 3.50% 65.00% 4.00% 

S.D. 8.47% 1.69% 9.03% 1.66% 
Min 20.00% 1.00% 25.00% 1.00% 
Max 80.00% 16.00% 80.00% 10.20% 

Notes: Fee drag is the difference between what Preqin labels gross-of-fee and net-of-fee maximum IRR 
estimated at the fund start date. 

 

Fund leverage ranges from 20.0% to 80.0%, with a median as well as modal value of 65.0% (see Table 3). The 

mean of the distribution is 63.96% using unmatched data (62.37% using only matched data). Leverage Two 

hundred and sixty-one of 364 funds (71.7%) report leverage in the range of 60.0% to 70.0%, while 331 funds 

(90.9%) report leverage in the range of 50.0% to 75.0%. 

Table 3 – Sample Distribution of PERE Fund Leverage 

Fund 
Leverage 

20-
39% 

40-
49% 

 
50% 

51-
59% 

 
60% 

61-
64% 

 
65% 

66-
69% 

 
70% 

71-
75% 

 
80% 

 
Total 

N 3 6 34 15 54 2 131 13 61 36 9 364 
 

Columns (2) and (4) of Table 2 report fee drag estimates, which equals the difference between gross-of-fee and 

net-of-fee IRR estimates. The Preqin data provide maximum as well as minimum target-IRR estimates. I use 

maximum estimates to streamline the analysis. Based on mean and median values from both the unmatched and 

matched samples, 3.50% to 4.00% fee drag is observed.  

Lastly, I consider relations between key variables. Using the Real Estate Alert data, I calculate a correlation 

between the carry hurdle value and target IRR of .37, which is significantly different from zero at the 1.0% 

level. The positive relation is intuitive. All else equal, a higher carry hurdle value implies lower GP fees and 
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therefore higher net-of-fee IRRs for the LP. Using the Preqin data, I calculate the correlation between fund 

leverage and the maximum net-of-fee IRR target. In this case, based on a sample size of 323 a correlation 

coefficient of .17 results, which is also significantly different from zero at the 1.0% level. A positive relation 

between leverage and target-IRR is also intuitive. All else equal, LP’s in more levered funds should expect 

higher returns.7 By inference, then, a positive relation between the carry hurdle value and target return, as well 

as between leverage and the return target, implies a positive relation between the carry hurdle value and 

leverage. This relation follows from the GP’s endogenous fund leverage choice when confronted with the 

incentive fee contract, where a higher break-point incentivizes the GP to increase leverage in order to reduce its 

reliance on more costly equity capital. 

In summary, the following empirical facts emerge from this analysis of PERE-based buyout funds. In terms of 

fee structure, best point estimates are management fees of 1.5%, a carry hurdle rate of 9.0%, and a carried 

interest share of 20.0%. The carry hurdle finding of 9.0% is higher than the commonly cited 8.0% rate. There is 

also some variation around the 9.0% median value. Importantly, catch-up fees vary significantly across the 

sample. I therefore find that the PE incentive fee contract is calibrated to a greater extent than previously 

documented (as in Metrick and Yasuda (2010), for example), particularly through the catch-up provision. 

Fund leverage primarily ranges between 50.0% and 75.0%, with a central tendency in the 60.0% to 70.0% 

range. Fund leverage tends to cluster at 65.0%. Net-of-fee target-IRRs generally fall between 14.0% and 20.0%, 

with a mean value of 16.71%. An analysis of the differences between gross- and net-of-fee target-IRRs indicates 

a fee drag of 3.5% to 4.0%. Fee drag of these magnitudes is less than the 5.0% estimate of Phalippou and 

Gottschalg (2008) and Robinson and Sensoy (2013) for PE funds, but is close to the estimates of Metrick and 

Yasuda (2010) for PE as well as Ben-David et al. (2020) in the case of hedge funds. Finally, positive relations 

between the carry hurdle value and target IRR, as well as leverage and target IRR are documented.  

These stylized empirical facts serve as a foundation for model development and evaluation, and will be closely 

referenced as I move forward in the paper.  

                                                           
7 See Brown et al. (2020) for empirical evidence of a positive relation between PE fund leverage and performance. 
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II.B. Model Sketch 

GPs exert effort to establish professional reputation and maximize lifetime earnings. This long-term, lifetime 

earnings perspective is known in the literature as indirect compensation (e.g., Chung, et al. (2012) and Lim, 

Sensoy and Weisbach (2016)). Indirect compensation creates strong incentives to exert effort on live funds 

regardless of compensation structure. The implications of indirect GP compensation incentives are two-fold: 1) 

Alpha can be taken as a (constant) measure of GP skill that is known to market participants based on past 

performance, and 2) It deepens the carried interest incentive fee puzzle, as fixed compensation that varies 

directly with GP skill would seem sufficient.  

This leads me to focus on current fund structure for a complementary explanation of carried interest. I 

specifically focus on analyzing the link between the carried interest fee contract and fund leverage.  Given 

commonly observed interest carry contract terms, I am especially interested in matching model-generated fund 

leverage level, as well as matching up net-of-fee target returns and fees, with the data. Later I consider the issue 

of explaining the incentive contract itself when the LP endogenously targets returns and fund leverage through 

an optimization. 

A high level summary of the model structure is as follows. There are three distinct agents considered: 1) The 

LP, which possesses residual cash flow rights, including priority on preferred interest, based on its equity 

investment in the fund; 2) The GP, which possesses day-to-day investing, financing and operating control rights 

over the fund, as well as contingent residual cash flow rights through the incentive fee contract; and 3) The 

secured lender, which possesses absolute priority cash flow rights by providing debt financing on a limited 

liability basis. The incentive fee contract that governs profit-sharing is jointly determined by the LP and GP, 

while the debt contract is negotiated by the GP on behalf of fund investors. 

Conditional on the incentive fee contract, the GP maximizes expected incentive fee payoffs by choosing how 

much debt to use to finance investment. Based on this choice, a secured non-recourse debt contract is executed 

between the GP and the lender. Debt funding is released at the time of investment, with the acquired assets 
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providing security for the loan.8 Expected returns from LP investment are measured by the net-of-fee IRR. In 

the full model examined in section VI, the LP sets a return and fund leverage target endogenously, which 

constrains the GP’s leverage-based optimization problem.   

Equity commitment, real asset investment and secured debt financing conditional on a commitment to invest 

occur in the order described. For modeling purposes these action steps are compressed to the start date of the 

fund, time t=0, with actions determined simultaneously, in reverse order, based on backward induction. LP 

equity contribution at t=0 is referred to as committed capital. This capital includes management fees to be paid 

to the GP over the life of the fund.9 For modeling purposes I treat all real assets that populate a fund as one large 

asset. A closed-end fund structure is assumed, with no interim cash flows generated by the fund. Assets are held 

for T years and then sold, with proceeds immediately distributed at that time based on priority according to the 

debt and incentive fee compensation contracts.  

III. Step 1: The Cost of Debt Financing 

III.A. The Case for Incorporating Costs of Financial Distress 

Models of PE valuation and capital structure have mostly sidestepped financial distress costs to focus on other 

frictions.10 The lack of attention on financial distress costs in PE is surprising (at least to me). It may in part 

follow from some of the findings of Andrade and Kaplan (1998), who show that high debt levels, and not 

operating inefficiencies, are the sources of distress in their LBO sample. They also find that financial distress is 

resolved with fewer losses on average relative to a non-treated sample, and that financial distress costs are 

                                                           
8 See Axelson, Stromberg and Weisbach (2009) for more on this fundraising timing issue, where they note, “Typically these 
[PE] funds raise equity capital at the time they are formed, and raise additional capital when the investments are made… 
[where] this additional capital usually takes the form of debt when the investment is collateralizable.” 
9 According to Metrick and Yasuda (2010), committed capital is generally defined as invested capital (the equity 
contribution) plus lifetime management fees plus establishment cost. I will ignore establishment cost. Lifetime management 
fees in my model are delivered by the LP into a trust account at t=0, to be used to fund the distribution of management fees 
throughout the life of the fund. See Arnold, Ling and Naranjo (2017) for an empirical examination of committed funds to 
PERE that are waiting to be called.  
10 A noteworthy exception is Lan, Wang and Yang (2013) in their examination of hedge funds. They develop an infinite 
horizon fund valuation model with liquidation costs that impact the cost of debt financing and dynamic fund leveraging 
decisions.  
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nearly non-existent for LBO transactions that do not experience a negative shock. Yet, in the end, Andrade and 

Kaplan estimate costs of financial distress to be in the 10 to 20 percent range. 

These results were generated from a sample of buyout funds in the 1980s and 1990s. During that period buyout 

funds performed very well on average, with high alphas helping offset the usual costs of financial distress. But 

what happens when alpha declines, as it has in recent years in buyout funds (see, e.g., Phalippou (2021), Gupta 

and Van Nieuwerburgh (2021)), or when other fund types such as real assets are considered where alphas are 

not likely to be large to begin with?  

In the commercial real estate sector, publicly listed firms and non-institutional PE market alternatives exist to 

compete directly with institutional PERE. This implies diminished marginal operating, governance and financial 

engineering gains attributable to PERE, resulting in relatively lower alphas (Gupta and Van Nieuwerburgh 

(2017), Pagliari (2020), Riddiough (2021)). Furthermore, in their analysis of insurance company loans backed 

by income-producing collateral, Brown et al. (2006) document distress costs in commercial real estate lending 

on the order of 20-30% above and beyond losses attributable to the asset’s internal transfer value at the time of 

foreclosure. These costs include addressing deferred maintenance and realizing fire-sale discounts when 

disposing of the asset. For PERE Value-Add and Opportunity funds, which focus on real estate development and 

repositioning opportunities, I would expect lender losses to be meaningfully higher than those found in Brown et 

al. (2006).11 

III.B. Model 

In determining the cost of closed-end PE fund debt, I adopt and extend the baseline model structure of Sorensen, 

Wang and Yang (2014). The model accounts for alpha as it impacts PE fund performance. Alpha is GP and 

                                                           
11 Tax shield effects in PE appear to be less important than standard corporate financial analysis might suggest. For 
example, Jenkinson and Stucke (2011) find that incremental tax shield benefits to the issuance of buyout debt largely accrue 
to preexisting shareholders through the acquisition share price. In addition, not all PE debt is issued at the target firm (Op-
Co) level, with increasing debt in recent years being issued at the fund or sponsor level, presumably with no tax shield pass-
through benefits. Similarly, in PERE there is no taxation at the property-firm level to result in double taxation on equity. 
Even listed commercial real estate firms, REITs, are not taxed at the firm level. Furthermore, the vast majority of LP equity 
investors in PERE (as well as certain other forms of PE) are tax-exempt institutions such as pension funds, endowments and 
sovereign wealth funds. 
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possibly fund specific, persistent over time, and unrelated to general economic conditions. My innovation is to 

incorporate deadweight costs of financial distress into the model. 

Denote the total acquisition cost (book value) of assets that populate the fund as V0.12 The equilibrium rate of 

return to the assets is μ. Asset value Vt evolves continuously over time according to geometric Brownian motion, 

with a drift of μ+α. Positive alpha causes super-normal returns that accrue to the fund’s asset value, resulting 

from GP operating skill, with the effects emitted continuously and constantly over the life of the fund.13 Asset 

volatility is denoted by σ. 

The collateralized loan is structured as zero-coupon debt. There is recourse only to the fund’s assets in case of 

default. Default will only occur at the maturity date, T, happening only if 𝑉𝑉𝑇𝑇< B, where B is the face amount of 

the debt due at maturity. I will not consider any strategic bargaining that could occur between the lender and the 

fund investor over the deadweight costs incurred by the lender as a result of investor default. Deadweight costs 

incurred by the lender in the case of PE fund default are proportional to 𝑉𝑉𝑇𝑇, with the cost parameter denoted by 

k, 0 ≤ k ≤ 1. This implies that, conditional on default, the lender recovers (1 − 𝑘𝑘)𝑉𝑉𝑇𝑇 at time T.  

Lending markets are perfectly competitive. Moreover, as in Sorensen et al. (2014), loans are held by diversified 

investors with an ability to insure against all relevant state-contingent outcomes. Debt value at the time of 

issuance equals D0, determined as follows: 

 𝐷𝐷0 = 𝑒𝑒−𝑟𝑟𝑟𝑟𝔼𝔼0[𝑀𝑀𝑀𝑀𝑀𝑀{𝑉𝑉�𝑇𝑇^(1 − 𝑘𝑘)𝑉𝑉�𝑇𝑇 ,𝐵𝐵}] (1a) 

                                                           
12 It is not necessary that V0 is exogenously specified. I will circle back to this issue in the next section.  
13 Sorensen et al. (2014) also make a distinction between full versus incomplete spanning. I follow their baseline model, 
assuming full spanning. In this regard they state, “Under full spanning the risk of the PE assets is traded in the market, but 
the PE asset can still earn a positive alpha. In contrast, under complete markets this alpha would be arbitraged away. In our 
model this arbitrage does not happen because the GP generates the alpha, and the LP can only earn it by investing in the PE 
fund along with the associated costs. While the LP can dynamically hedge the risks associated with the PE asset, the LP 
cannot invest in the PE asset directly, and the market is formally incomplete. Depending on the relative bargaining power, a 
skilled GP may capture some or all of the excess return through the compensation contract, as long as the LP remains 
willing to invest.” I further note that full spanning in PERE has been directly supported in recent empirical work of 
Goetzmann, Gourier and Phalippou (2019) and Gupta and Van Nieuwerburgh (2021).  
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where r denotes the riskless rate of interest and 𝑉𝑉�𝑇𝑇^(1− 𝑘𝑘)𝑉𝑉�𝑇𝑇  indicates that default occurs when 𝑉𝑉𝑇𝑇 < 𝐵𝐵, with 

recovery equaling (1 − 𝑘𝑘)𝑉𝑉𝑇𝑇. For valuation purposes the asset drift rate in this case is subject to the usual 

equivalent martingale adjustment. 

Solving this equation is straightforward, with debt value written as follows:  

 𝐷𝐷0 = 𝑒𝑒−𝑟𝑟𝑟𝑟𝐵𝐵𝐵𝐵[𝑑𝑑2] + (1 − 𝑘𝑘)𝑉𝑉0𝑒𝑒𝛼𝛼𝛼𝛼𝑁𝑁[−𝑑𝑑1] (1b) 

where N[∙] denotes the cumulative standard normal distribution function, with 

  𝑑𝑑1 =
𝑙𝑙𝑙𝑙�𝑉𝑉0 𝐵𝐵� �+�(𝑟𝑟+𝛼𝛼)+12𝜎𝜎

2�𝑇𝑇

𝜎𝜎√𝑇𝑇
 , 𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎√𝑇𝑇 (1b') 

Observe that debt value, 𝐷𝐷0, reverts to the frictionless debt value analyzed in Merton (1974) when k = α = 0. 

Further note that D0 decreases linearly in k, the proportional costs of financial distress, whereas D0 increases in α 

given that 𝜕𝜕𝐷𝐷0
𝜕𝜕𝜕𝜕

= 𝑉𝑉0𝑒𝑒𝛼𝛼𝛼𝛼√𝑇𝑇�(1− 𝑘𝑘)√𝑇𝑇𝑁𝑁[−𝑑𝑑1] + 𝑘𝑘𝑘𝑘(𝑑𝑑1) 𝜎𝜎⁄ � > 0, with n(∙) denoting the standard normal pdf. 

Finally, note that 𝐷𝐷0 retains the important property that it is linearly homogeneous in 𝑉𝑉0 and B.  

Debt value, D0, will be smaller or larger (i.e., more expensive or cheap) than the Merton (1974) frictionless debt 

value, 𝐷𝐷0𝑀𝑀 , depending on the size of α relative to k. In Figure 1, 𝐷𝐷0 is compared to 𝐷𝐷0𝑀𝑀 given variation in k and α. 

The solid line indicates (k,α) combinations that result in 𝐷𝐷0 = 𝐷𝐷0𝑀𝑀. For a given cost of financial distress 

parameter, k, an alpha larger than that indicated along the solid line is necessary to generate cheap debt—i.e., a 

debt value exceeding the Merton (1974) frictionless debt value. For example, at k=.30, and given other specified 

parameter values, α must exceed .0351 in order for 𝐷𝐷0 ≥ 𝐷𝐷0𝑀𝑀. Otherwise, for α<.0351, debt costs (yields) 

exceed those obtained in a frictionless setting due to costs of financial distress, implying expensive debt.  

Given positive costs of financial distress, debt becomes increasingly “less cheap” as leverage increases. In fact, 

for any given positive and finite alpha, the increasing marginal cost of debt due to k>0 implies that there will 

exist a B such that debt is no longer cheap in the sense that 𝐷𝐷0 ≥ 𝐷𝐷0𝑀𝑀. I now formally derive marginal debt costs 

as a function of B, emphasizing a result whereby debt becomes infinitely expensive at the margin. The following 

lemma summarizes the result, which I refer to as the choke condition. 
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Figure 1 – Debt Value as a Function of Alpha and Costs of Financial Distress 

 

Notes: This figure plots debt value for combinations of k and α such that D0 equals the frictionless debt value, 𝐷𝐷0𝑀𝑀. 
Debt values to the right of the curved line are combinations of k and α such that D0 is less than the frictionless debt 
value, while debt values to the left of the curved line are combinations of k and α such that D0 is greater than the 
frictionless debt value. Parameter values are: V0=100; B=80; r=.02 : μ=.10; α=.02; σ=.175; k=.30; T=6.0. 

 

Proposition 1 (The “Choke” Condition): 𝝏𝝏𝑫𝑫𝟎𝟎
𝝏𝝏𝝏𝝏

= 𝒆𝒆−𝒓𝒓𝒓𝒓 �𝑵𝑵[𝒅𝒅𝟐𝟐] − 𝒏𝒏(𝒅𝒅𝟐𝟐) 𝒌𝒌
𝝈𝝈√𝑻𝑻

�. For any k>0, there exists a 

unique B, 𝑩𝑩𝒌𝒌
∗ , which satisfies 𝑵𝑵[𝒅𝒅𝟐𝟐] − 𝒏𝒏(𝒅𝒅𝟐𝟐) 𝒌𝒌

𝝈𝝈√𝑻𝑻
= 𝟎𝟎.  𝝏𝝏𝑫𝑫𝟎𝟎

𝝏𝝏𝝏𝝏
> 𝟎𝟎 and 𝝏𝝏

𝟐𝟐𝑫𝑫𝟎𝟎
𝝏𝝏𝑩𝑩𝟐𝟐

< 𝟎𝟎 for k>0 and 𝑩𝑩 ∈ [𝟎𝟎,𝑩𝑩𝒌𝒌
∗). 

Proof: See Appendix A 

 

When k=0, the standard comparative static result obtains in which debt value always increases as a function of 

B. However, for any k>0, there exists a finite leverage level, denoted as 𝐵𝐵𝑘𝑘∗, at which the comparative static 

switches signs to become negative. I label this crossing point the “choke condition” – the point at which the 

marginal cost of debt becomes infinite. Figure 2 displays how the key relation, 𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑇𝑇

, varies as a 

function of B. At B=0,  𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑇𝑇

= 1. For k>0, 𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑇𝑇

 is positive but decreasing up to the 

point at which 𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑇𝑇

= 0. After crossing the choke threshold, debt value begins to decrease with 

increases in B. A functional minimum will exist, after which the slope of the function turns positive and 

asymptotes to zero from below as B→∞.  
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Figure 2 – The “Choke” Condition 

 

Notes: This figure displays 𝜕𝜕𝐷𝐷0
𝜕𝜕𝜕𝜕

, i.e., marginal changes in debt value as it depends on B. 𝜕𝜕𝐷𝐷0
𝜕𝜕𝜕𝜕

 crosses zero at the choke 
value, 𝐵𝐵𝑘𝑘∗, which in this case is 𝐵𝐵𝑘𝑘∗  = 169.0. For B’s that exceed 𝐵𝐵𝑘𝑘∗, debt values decrease as B increases, implying that 
𝐵𝐵 = 𝐵𝐵𝑘𝑘∗  establishes an endogenous upper bound on the debt funding amount. Parameter values used to generate the 
figure are: V0=100; r=.02: μ=.10; α=.02; σ=.175; k=.30; T=6. 

 

The zero-crossing displayed in Figure 2 thus corresponds with an endogenously determined maximum debt 

value, implying a hard limit on debt issuance proceeds. Consequently, when there are costs of financial distress, 

with enough leverage, even when the cost of debt incorporates a substantial alpha that causes “cheap debt” at 

low to moderate leverage levels, debt eventually becomes infinitely expensive at the margin. This endogenous 

limit on debt funding provides a new and different rationalization as to why equity-constrained GPs finance 

themselves with outside equity capital through the LP-GP investment vehicle structure.14,15  

Lastly, observe that my model is in certain respects reminiscent of Leland (1994). Both are tradeoff models 

constructed using continuous-time methods, and both incorporate costs of financial distress. Financial distress 

                                                           
14 This is in contrast to Axelson, Stromberg and Weisbach (2009), who posit asymmetric information between GP’s and 
LP’s, with debt emerging as the low-cost source of funds with which to acquire fund assets. 
15 Given parameter values used to generate Figure 2, and considering three alternative alpha values of .00, .02 and .04, I 
specifically calculate the maximum achievable initial debt value, 𝐷𝐷0𝑀𝑀𝑀𝑀𝑀𝑀. Assuming an asset acquisition cost of V0=100, the 
maximums are 72.39, 81.62 and 92.02, respectively. The first two maximum debt values produce debt-to-value ratios of 
72.39% and 81.62%. This corresponds well with maximum LTV ratios observed in the commercial real estate mortgage 
market. 
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costs in both cases create endogenous bounds on debt proceeds – the point at which debt is infinitely expensive. 

My model is constructed for a closed-end PE fund, however, while Leland’s model best applies to corporations 

as going concerns and perhaps open-end PE funds as well as hedge funds. Whereas debt in Leland’s model is 

coupon-based with no maturity date, and with bankruptcy endogenously determined, debt is zero-coupon in my 

model with a finite maturity date matching the fund liquidation date. Bankruptcy happens only at debt maturity 

when fund asset value is less than what is owed on the debt. Most importantly, there is tax deductability of 

interest favoring debt financing in the Leland model. Taxes are not incorporated as an offset to costs of financial 

distress in my model, whereas the existence of GP alpha favors debt as a funding source. 

IV. Step 2: The Compensation Contract and the GP’s Leverage Choice Problem 

The GP’s compensation contract has two basic components: i) management fees that cover an assortment of 

activities necessary to finance, invest and operate the fund, and ii) an incentive fee that is paid at the end of the 

fund’s life. Management fees come in a variety of shapes and sizes, including acquisition and monitoring fees 

(Metrick and Yasuda (2010)). In the case of PERE funds, there are also commonly property management, 

project management and development fees. 

To simplify matters, I will assume that management fees are imposed by the GP to cover all of the estimated 

overhead costs. These costs, denoted as Φ𝐹𝐹 , are included in the LP’s capital that is contributed at the start of the 

fund life. They are to be drawn upon by the GP as various investment and operating costs are incurred. 

Management fees, once they are set by the GP, and included in contributed capital, do not impact the GP’s fund 

leverage decision.16  In contrast, the incentive fee, often referred to as carried interest, depends directly on the 

LP’s prioritized preferred return on equity as well as the marginal cost of debt as they (may) vary as a function 

of fund leverage.    

                                                           
16 If management fees were only paid as a constant fixed percentage of invested or contributed capital, and there were no 
other fees, one could argue that management fees affect fund capital structure choice. But as documented by Phalippou 
(2018) and others, the plethora of PE fees, such as transaction fees, monitoring fees, deal fees, and so on, many of which 
scale by total assets of the fund rather than contributed capital, suggest a management fee structure that is not dependent on 
relative fund leverage. The additional PERE fund fees noted above also scale by fund assets rather than fund equity. 
Finally, management fees, in theory and presumably in practice, are set to cover GP overhead and overhead only. Thus, 
overhead costs will either be invariant to or mostly depend on total fund size.  
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Although fund leverage is to a greater or lesser extent observable, and therefore potentially contractible, it 

remains true that fund leverage choice is controlled by the GP. Indeed, as Brown et al. (2021) show, the GP has 

several different debt funding levers available to it, where debt sources outside of the Op Co level can be hard 

for the LP to observe and control. If the GP is able to increase its expected carried interest payouts by increasing 

or decreasing fund leverage from that identified in the offering documents, one should expect to observe fund 

leverage “shading” by the GP in one direction or the other. In recognition of the potential for ex post 

opportunism, I hypothesize that the GP’s fund leverage choice is directly managed through the carried interest 

contract. With this in mind I will now work out incentive compatible fund leverage choice (the carrot), and later 

introduce ex ante contracting on fund leverage levels (the stick) as a complement to determining fund leverage. 

Let expected GP incentive fee revenue equal Φ𝑉𝑉(𝐵𝐵;𝜓𝜓,𝜌𝜌), where ψ≥0 denotes the carried interest return hurdle 

rate and ρ, 0≤ρ≤1, denotes the carried interest share percentage.  Carried interest paid to the GP will be based on 

the time T liquidation value of the fund.17 Specifically, carried interest is only paid at time T when total 

liquidation value of the fund’s assets exceeds the time T priority claim payoffs of 𝐵𝐵 + (𝑉𝑉0 − 𝐷𝐷0)𝑒𝑒𝜓𝜓𝜓𝜓. Here, B is 

balloon debt payment due at time T, 𝑉𝑉0 − 𝐷𝐷0 is LP equity available for investment at the start of the fund’s life 

(i.e., invested capital), and ψ is continuously compounded carried interest hurdle rate that establishes the LP’s 

preferred return of capital.18  

Let 𝜒𝜒0(𝐵𝐵;𝜓𝜓) = 𝐵𝐵 + (𝑉𝑉0 − 𝐷𝐷0)𝑒𝑒𝜓𝜓𝜓𝜓.  The quantity 𝜒𝜒0(𝐵𝐵;𝜓𝜓) is an exercise price above which carried interest is 

paid and below which incentive compensation is zero. The GP’s resulting optimization problem can be stated as 

follows, where the GP chooses the fund capital structure to maximize expected incentive fees to be paid at the 

time of fund liquidation: 

                                                           
17 According to its 2020 survey of management fees and terms study, PREA finds that 93% of PERE Value-Add and 
Opportunity fund survey respondents calculate incentive fees after the full return of capital calculated at the end of the 
fund’s life. 
18 Phallipou (2021) notes that industry practice sometimes incorporates management fees that are part of the LP’s 
contributed capital into the calculation of the carried interest hurdle value. Doing so effectively increases the hurdle, which 
in turn endogenously affects fund leverage determination and ultimately carried interest. I have considered this 
modification and found that it is straightforward to incorporate into the analysis, and that it does not change essential 
relations or magnitudes in meaningful ways. As a result, I will utilize investable capital rather than contributed capital in 
my baseline model when determining the preferred interest payment. 
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 𝑀𝑀𝑀𝑀𝑀𝑀
𝐵𝐵

 Φ𝑉𝑉(𝐵𝐵;𝜓𝜓,𝜌𝜌) = 𝔼𝔼0[𝑀𝑀𝑀𝑀𝑀𝑀{0,𝜌𝜌[𝑉𝑉�𝑇𝑇 − 𝜒𝜒0(𝐵𝐵;𝜓𝜓)]}],  (2a) 

  s.t. Φ𝑉𝑉(𝐵𝐵;𝜓𝜓,𝜌𝜌) > Φ�𝑉𝑉 ,𝐷𝐷0𝑀𝑀𝑀𝑀𝑀𝑀 ≤ 𝐷𝐷0 ≤ 𝐷𝐷0𝑀𝑀𝑀𝑀𝑀𝑀 (2a')

 The constraints identified in equation (2a') are: i) Expected incentive fees exceeding a minimum, Φ�𝑉𝑉 ≥

0, to ensure participation of the fund manager, and ii) Endogenous fund leverage choice satisfying 

predetermined fund leverage bounds. These constraints can, among other things, reflect the GP’s bargaining 

power and longer-run fundraising objectives. Throughout, I will assume a lower bound on Φ�𝑉𝑉 of zero unless 

otherwise noted. Given that fixed fees cover overhead and other essential operating costs, the GP will never be 

willing to participate unless it expects to earn positive incentive fees. As for explicit limits on fund leverage, as 

noted above I put them aside for now to be taken up later in the paper.  

Equation (2a) is recognized as a call option on fund payoffs that exceed those required to pay off priority claims, 

where the optimization problem can now be written as, 

  𝑀𝑀𝑀𝑀𝑀𝑀
𝐵𝐵

 Φ𝑉𝑉(𝐵𝐵;𝜓𝜓,𝜌𝜌) = 𝜌𝜌 �𝑉𝑉0𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑇𝑇𝑁𝑁[ℎ1] − 𝜒𝜒0𝑁𝑁[ℎ2]� (2b) 

  ℎ1 =
𝑙𝑙𝑙𝑙�𝑉𝑉0 𝜒𝜒0� �+�(𝜇𝜇+𝛼𝛼)+12𝜎𝜎

2�𝑇𝑇

𝜎𝜎√𝑇𝑇
 , ℎ2 = ℎ1 − 𝜎𝜎√𝑇𝑇 (2b') 

I am now in a position to solve the GP’s variable compensation optimization problem, with Proposition 2 stating 

the result. 

Proposition 2 (Unconstrained Optimal Fund Leverage Choice): 𝝏𝝏𝚽𝚽
𝑽𝑽

𝝏𝝏𝝏𝝏
= −𝝆𝝆𝝆𝝆[𝒉𝒉𝟐𝟐] �𝟏𝟏 − 𝒆𝒆(𝝍𝝍−𝒓𝒓)𝑻𝑻 �𝑵𝑵[𝒅𝒅𝟐𝟐] −

𝒏𝒏(𝒅𝒅𝟐𝟐) 𝒌𝒌
𝝈𝝈√𝑻𝑻

�� = 𝟎𝟎 satisfies GP incentive compatible capital structure choice. For 𝝍𝝍 ≥ 𝒓𝒓, a finite incentive 

compatible debt value, 𝑩𝑩∗, exists in the range 𝑩𝑩∗ ∈ [𝟎𝟎,𝑩𝑩𝒌𝒌
∗ ). 𝑩𝑩∗ is also unique for any k≥0. Further, 𝑩𝑩∗ does 

not depend on the carried interest percentage, ρ. Alternatively, for 𝝍𝝍 < 𝒓𝒓, 𝑩𝑩∗ = 𝟎𝟎 is optimal. 

Proof: See Appendix A 

When 𝜓𝜓 ≥ 𝑟𝑟, inspection of the incentive compatibility condition reveals that there is a unique solution in which 

𝐵𝐵∗ is increasing in 𝜓𝜓. This follows from proposition 1, since 𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑇𝑇

 is positive and strictly 

decreasing in B in the range B∈[0,𝐵𝐵𝑘𝑘∗). Note that a positive relation between the carry hurdle rate and leverage 

conforms with the previous empirical relation documented in section II.A.  
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The finding that the GP optimizes incentive fee payments with finite leverage, and with fund-level debt that is 

increasing in the carry hurdle rate, is not necessarily intuitive. To better understand the result, one can rearrange 

terms inside the bracketed term in proposition 2 as follows: 

  𝑒𝑒𝜓𝜓𝜓𝜓 = 1
𝜕𝜕𝐷𝐷0
𝜕𝜕𝜕𝜕

= 𝑒𝑒𝑟𝑟𝑟𝑟

𝑁𝑁[𝑑𝑑2]−𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑇𝑇

 (3) 

Given 𝜓𝜓, which appears only in the LHS of equation (3), preferred interest payments to the LP accrue in 

proportion to invested capital. The LHS of equation (3) measures the marginal benefit of reducing invested 

capital (increasing debt) over the life of the fund. Importantly, preferred interest does not vary as a function of 

fund leverage. The RHS of equation (3) quantifies marginal increases in the cost of debt as debt is substituted 

for equity in the fund’s capital structure. With no fund leverage, the opportunity cost of debt capital is r (since 

the denominator is equal to one when B=0). As fund leverage increases above zero, so does the marginal cost of 

debt. The GP increases fund leverage until the marginal cost of debt over the life of the fund equals the marginal 

benefit of reducing the LP’s equity footprint as it determines preferred interest payments. A higher ψ implies a 

higher marginal cost of equity as it applies to optimizing GP incentive fees, which in turn implies a higher 

marginal cost of debt in equilibrium, and thus higher fund leverage. 

This tradeoff in the cost of debt versus equity stands in stark contrast to conventional relations in which the cost 

of equity capital increases in leverage. In PE, according to the standard carried interest compensation contract, 

the LP equityholder does not explicitly require any compensation for risk in its preferred rate of interest. This 

makes the LP equity capital particularly cheap at moderate to high fund leverage levels, which limits fund 

leverage. I note that this relation is revealing about LP attitudes towards risk. Granted, the LP does have an 

additional residual claim on fund profits, which it shares with the GP. But the pro rata sharing of residual profits 

makes that part of the capital stack irrelevant to the optimal fund leveraging decision made by the GP, which 

undercuts the commonly held notion that convex payoffs result in unbounded risk-taking. 

In the absence of a minimum fund leverage constraint, equation (3) also clarifies why 𝐵𝐵∗ = 0 when ψ =r. 

Furthermore, when 𝜓𝜓 < 𝑟𝑟 there is no internal solution to the IC condition stated in proposition 2. In this case, 
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𝐵𝐵∗ = 0, since 𝜕𝜕Φ
𝑉𝑉

𝜕𝜕𝜕𝜕
 is negative for all B∈[0,𝐵𝐵𝑘𝑘∗). The GP is incentivized to avoid fund leverage altogether, even 

though debt may be cheap due to positive alpha. It does so because the cost of equity capital with respect to the 

preferred interest rate is even less than the risk-free rate of interest.  

Figure 3 provides a visual depiction of GP’s fund leverage choice outcome, B*, conditional on ψ>r. Incentive 

contract terms are ψ=.09, ρ=.20, which correspond with the median carried interest hurdle rate and carried 

interest share values found in my earlier empirical analysis utilizing the Real Estate Alert data. The figure shows 

that B* equals 76.7, which generates expected carried interest of Φ𝑉𝑉 = 14.54. Time t=0 debt value, 𝐷𝐷0∗, equals 

63.09. Given that 𝑉𝑉0 = 100, invested capital is 36.91. Endogenously determined incentive compatible fund 

leverage of 63.09% is right in between the two mean values of 62.37% and 63.96% found in my earlier 

empirical analysis as reported in Table 2.19  

Figure 3 – GP Choice of Fund Leverage to Optimize Carried Interest Payments 

 

Notes: This figure displays the GP’s expected incentive fee as a function of B. A unique optimum exists, in this case at 
B=76.7, which corresponds with D0=63.1. Parameter values used to generate this figure are: V0=100; r=.02 : μ=.10; α=.02; 
σ=.175; k=.30; T=6; ψ=.09, ρ=.20. 

 

                                                           
19 I will follow industry convention and express leverage ratios based on the book value of assets (V0) rather than the market 
value of assets once acquired (V0eαT).  
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Proposition 2 is a separation result, in that only the preferred interest rate, 𝜓𝜓, and not the carried interest share 

value, ρ, is required to determine incentive compatible fund leverage. Prior empirical analysis documented 

variation in the carried interest hurdle rate, but almost no variation in the carried interest share value centered at 

20 percent. This is consistent with my model, where only the carried interest hurdle value, 𝜓𝜓, is necessary to nail 

down fund leverage. 

As a consequence, the carried interest percentage parameter, ρ, remains free to ensure the GP’s fund 

participation constraint is satisfied (see equation (2a')). The fact that this parameter is essentially invariant in 

practice suggests that: i) the participation constraint is never really binding at ρ=.20, implying that GP’s are 

effective at preventing LP’s from reducing ρ to the point where the participation constraint becomes binding, or 

ii) ρ=.20 assumes the role of an industry convention, essentially a universal constant of PE nature, with the GP 

addressing participation in other ways. I will circle back to this issue later in the paper when assessing incentive 

contracting when LP’s optimally target net-of-fee fund returns. 

The following result provides stronger justification of my model as it relates to the assumed fundraising 

structure. 

Corollary 1 to Proposition 2: 𝚽𝚽𝑽𝑽 is homogeneous of degree one in V0 and B.  

Proof: Follows by inspection of 𝚽𝚽𝑽𝑽 as stated in equation (2b) and recalling that D0 is also homogeneous in 

V0 and B. 

This result implies that the GP can simultaneously satisfy fund leverage and the target LP equity contribution by 

scaling total fund size up or down as necessary. In other words, given linear homogeneity of Φ𝑉𝑉 in V0 and B, an 

approach of holding V0 constant when determining the fund’s optimal capital structure does not impose 

unreasonable restrictions on the PE fundraising process.  

Intuition might suggest that a variable fund size that is scalable through the amount of equity raised can 

counteract the equity dilution effect associated with increased leverage. However, once the equity raise is 

realized, and given that fund asset characteristics (including alpha) do not change, the GP is subject to exactly 

the same leveraging incentives identified above given that the GP simultaneously optimizes fund leverage 
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structure and the contributed equity raise. In fact, an approach of first identifying fund size and then the fund’s 

capital structure, and therefore its required equity contribution, is consistent with industry practice, in that it also 

preserves the constant alpha value restriction. This approach is moreover consistent with the model and findings 

of Axelson et al. (2009). In their model total fund size is set exogenously, with the split between debt and equity, 

as well as fundraising sequencing, determined endogenously. They show that a fundraising sequence of first 

raising equity capital at the fund level, and then applying leverage at the asset level at the time of investment, 

serves as a commitment device that optimizes expected GP fees. 

An alternative sequencing approach of first raising LP equity (setting 𝐸𝐸0 = 𝐸𝐸�0) and then determining an optimal 

fund asset size, V0, as it depends on total leverage introduces additional complexities. As shown in Appendix B, 

in this case debt value is self-referencing due to the fact total fund size depends endogenously on debt quantity. 

A finite optimal debt level nonetheless exists using this approach, which I denote as 𝐷𝐷�0, where a different 

tradeoff ensues. In particular, by totaling differentiating 𝐷𝐷�0 with respect to B, in equilibrium I find that  

  1
𝜕𝜕𝐷𝐷�0
𝜕𝜕𝜕𝜕

= 𝑁𝑁[ℎ�1]𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑇𝑇

𝑁𝑁�ℎ�2�
 (4) 

where 𝐷𝐷�0 denotes time t=0 debt value when fund size itself depends on D0, and where ℎ�1 and ℎ�2 depend on 𝐷𝐷�0 

(see appendix B).  

Here, with preferred interest paid to the LP being invariant due to fixing the committed equity amount, the GP 

adds leverage until marginal debt costs (LHS of equation (4)) slightly exceed the marginal benefits of acquiring 

additional assets, 𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑇𝑇.20  This formulation makes explicit the reliance on constant alpha as a function of 

scale, which is dubious as the literature has shown (see, e.g., Kaplan and Lerner (2010) and Lopes-de-Silanes, 

Phalippou and Gottschalg (2015), among others). I further show that fund leverage in this alternative model 

structure exceeds fund leverage in my baseline model, in the sense that marginal debt costs are higher in 

equilibrium whenever ψ ≤ μ+α. This is intuitive, since ψ measures GP benefits of increasing leverage given a 

                                                           
20 “Slightly exceed” follows from the fact that 𝑁𝑁[ℎ�1]

𝑁𝑁�ℎ�2�
≥ 1. 
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fixed fund size, while μ+α reflects benefits of increasing fund size through leverage when holding contributed 

equity constant.  

Thus, in a relatively unrestricted setting, given a convex carried interest payoff function I show that there are 

limits to GP risk-seeking through fund leverage ratcheting. This result obtains even when there are no costs of 

financial distress (k=0) and for managers that may or may not be skilled (α≥0). The tradeoff in this case is 

entirely due to the increasing marginal costs of debt due to fund expansion versus the (nearly constant) marginal 

benefits to acquiring additional assets and holding them over the life of the fund. As in the baseline fundraising 

case, the constant cost of preferred equity as a function of fund leverage plays a critical (but in this case silent) 

role, thus helping explain the limited fund size result.  

The bracketed term in proposition 2 indicates a direct mapping between the carried interest return hurdle, ψ, and 

the leverage measure, 𝐵𝐵∗. This relation can be restated by isolating the carried interest hurdle rate as a function 

of debt value parameters, which can then be used to characterize comparative static relations that exist between 

𝐵𝐵∗ and relevant parameter values. The following corollary states the results. 

Corollary 2 to Proposition 2: Given 𝝍𝝍 ≥ 𝒓𝒓 and for the relevant range, 𝑩𝑩∗ ∈ [𝟎𝟎,𝑩𝑩𝒌𝒌
∗ ), satisfying incentive 

compatibility implies that 𝝍𝝍 = 𝒓𝒓 − 𝟏𝟏
𝑻𝑻
𝒍𝒍𝒍𝒍 �𝑵𝑵[𝒅𝒅𝟐𝟐] − 𝒏𝒏(𝒅𝒅𝟐𝟐) 𝒌𝒌

𝝈𝝈√𝑻𝑻
�. With this, the following comparative static 

relations obtain: 𝝏𝝏𝑩𝑩
∗

𝝏𝝏𝝏𝝏
> 𝟎𝟎;  𝝏𝝏𝑩𝑩

∗

𝝏𝝏𝝏𝝏
< 𝟎𝟎;  𝝏𝝏𝑩𝑩

∗

𝝏𝝏𝝏𝝏
> 𝟎𝟎;  𝝏𝝏𝑩𝑩

∗

𝝏𝝏𝝏𝝏
𝟎𝟎>< ;  𝝏𝝏𝑩𝑩

∗

𝝏𝝏𝝏𝝏
𝟎𝟎><  𝝏𝝏𝑩𝑩

∗

𝝏𝝏𝝏𝝏
𝟎𝟎>< . 

Proof: See Appendix A 

𝜕𝜕𝐵𝐵∗

𝜕𝜕𝜕𝜕
> 0 and 𝜕𝜕𝐵𝐵

∗

𝜕𝜕𝜕𝜕
< 0 were discussed previously. Although the positive comparative static relation between GP 

skill (α) and fund leverage is intuitive in the context of the model, it provides an interesting contrast to 

predictions that focus on different agency frictions that exist between GP’s and LP’s. A focus on positive 

financial and governance engineering effects in the spirit of Jensen (1989) suggest a positive relation between 

leverage and alpha, with causation going from the former to the latter. More recent empirical findings of 

Demiroglu and James (2010) and Axelson et al. (2014) emphasize agency costs of debt as it affects fund 

performance, with similar causation but a negative relation. Brown et al. (2020) document a positive empirical 

relation between alpha (performance) and leverage, but the causal direction is unclear. My model indicates a 
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positive relation, but with causation going from alpha to fund leverage. This relation is consistent with Andrade 

and Kaplan’s (1998) findings that operationally efficient PE funds have lower overall distress costs, resulting in 

a better ability to bear leverage risk. In my model, for similar reasons, high alpha GP’s can assume greater 

leverage, and in fact do so in equilibrium because operational efficiencies offset costs of financial distress.    

In general, leverage can increase or decrease in the fund’s asset risk (σ). For realistic parameter values, the 

relation is negative. This follows because greater asset risk increases the marginal debt cost relative to the 

constant marginal cost of equity capital, which reduces the GP’s demand for debt. A negative relation between 

fund leverage and asset risk is consistent with the recent findings of Brown et al. (2020).  

Although ambiguous in general, for realistic parameter values a positive relation between fund life, T, and fund 

leverage obtains. A longer fund life favors the persistent effects of an upward drift in asset values relative to 

random price variation that can dominate over shorter horizons. This increases the fund’s ability to bear 

leverage. Lastly, an increase in interest rate (r) has a non-monotonic effect on fund leverage. 

V. Step 3: LP Performance Measurement, Parameter Selection and Model Calibration 

V.A. Gross- and Net-of-Fee Returns 

Gompers, Kaplan and Mukharlyamov (2016) document that institutional investors “focus more on absolute 

performance [typically measured by IRR] as opposed to risk-adjusted return,” while Korteweg (2019) states 

there is no consensus in PE as to how risk should relate to return, where “this lack of agreement has likely 

contributed to the lack of formal quantitative risk adjustment in practice.”  

Following industry practice, in the model LP performance is measured by IRR. The gross-of-fee IRR is simply, 

 𝜆𝜆𝐺𝐺 = 1
𝑇𝑇
�𝑙𝑙𝑙𝑙 �ℰ𝑇𝑇(𝐵𝐵)

𝐸𝐸0(𝐵𝐵)�� (5) 

where ℰ𝑇𝑇(𝐵𝐵) is the expected value of invested capital evaluated at time T and prior to the payment of incentive 

fees and 𝐸𝐸0(𝐵𝐵) = 𝑉𝑉0 − 𝐷𝐷0(𝐵𝐵) is equity contributed by the LP for investment and prior to payment of 

management fees.   
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The time T expected value of equity is a call option on the assets of the fund after debt repayment, expressed as 

follows: 

  ℰ𝑇𝑇(𝐵𝐵) = ∫ [𝑉𝑉�𝑇𝑇 − 𝐵𝐵]𝑓𝑓�𝑉𝑉�𝑇𝑇|𝑉𝑉0�𝑑𝑑𝑉𝑉�𝑇𝑇 = 𝑉𝑉0𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑇𝑇𝑁𝑁�𝑑̂𝑑1� − 𝐵𝐵𝐵𝐵�𝑑̂𝑑2�
∞
𝐵𝐵  (6) 

with 𝑑̂𝑑1 =
𝑙𝑙𝑙𝑙�𝑉𝑉0 𝐵𝐵� �+�(𝜇𝜇+𝛼𝛼)+12𝜎𝜎

2�𝑇𝑇

𝜎𝜎√𝑇𝑇
 , 𝑑̂𝑑2 = 𝑑̂𝑑1 − 𝜎𝜎√𝑇𝑇.   

Expected net-of-fee returns will depend on incentive fee payments as well as fixed management fees that are 

contributed as part of committed capital. The fundamental relation that describes net-of-fee investment 

performance is as follows: 

  𝑒𝑒𝜆𝜆𝑁𝑁𝑇𝑇[𝐸𝐸0(𝐵𝐵) + Φ𝐹𝐹] = ℰ𝑇𝑇(𝐵𝐵) −Φ𝑉𝑉(𝐵𝐵)  (7) 

where 𝜆𝜆𝑁𝑁 is the LP’s expected net-of-fees holding period return (IRR); 𝐸𝐸0(𝐵𝐵) + Φ𝐹𝐹 is committed LP capital at 

t=0, with total management fees denoted by Φ𝐹𝐹; and Φ𝑉𝑉(𝐵𝐵) is the expected incentive fee to be paid at time T to 

the GP as carried interest. Solving for λN in equation (7) results in: 

  𝜆𝜆𝑁𝑁 = 1
𝑇𝑇
�𝑙𝑙𝑙𝑙 �ℰ𝑇𝑇(𝐵𝐵)−Φ𝑉𝑉(𝐵𝐵)

𝐸𝐸0(𝐵𝐵)+Φ𝐹𝐹 ��  (8) 

The properties of the expected holding period return will vary depending on parameter selection. Putting aside 

fund leverage constraints and the GP’s incentive compatible debt choice for the moment, in certain cases when 

financial distress costs, k, are small relative to α, infinite expected returns can be achieved at finite leverage 

levels. This outcome can be seen in the denominator term of equation (8), where it is possible for 𝐸𝐸0(𝐵𝐵) + Φ𝐹𝐹 

to approach zero from above as B increases. For example, given k=0, 𝛼𝛼 = .02,Φ𝐹𝐹 = 5, and given other 

parameter values used to generate Figure 4, at B=172.7 (D0=105) the expected holding period return blows up 

to become infinite. Alternatively, when k=.3 a “break-even” alpha obtains, with α=.062 such that D0=105 at 

𝐵𝐵 = 𝐵𝐵𝑘𝑘∗ =217.4. At this point the expected holding period return goes to infinity. Given k=.3, for alpha values 

in excess of .062 the expected holding period return blows up at even lower B values. 
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The ultimate cause of this phenomenon is an arbitrage. Fund assets are acquired at a cost of V0, where asset 

value in the hands of the GP goes immediately to 𝑉𝑉0𝑒𝑒𝛼𝛼𝛼𝛼. For small to negligible financial distress costs, debt 

value at t=0 can exceed V0 for B large enough, as lenders too recognize the value-enhancing ability of the GP. In 

the case of k equal to zero, any positive alpha is sufficient for there to exist a finite B such that “cheap” debt 

proceeds equal the acquisition value of fund assets. Such outcomes do, however, contradict rationales that rely 

on GP financial constraints to explain the existence of the PE fund model, since the GP can finance the entire 

fund asset acquisition cost itself with the use of “cheap” debt. In my model, which posits positive and not 

insignificant costs of financial distress that result in endogenously determined maximum debt levels, such 

pathological outcomes occur only rarely when realistic parameter values are imposed.  

V.B. Parameter Selection and Model Calibration 

The purpose of this sub-section is to carefully analyze the model’s ability to explain the data. In particular, I 

hypothesize that a meaningful link between the PE incentive contract and GP fund leverage choice exists, with 

outcomes that also explain observed LP target returns. At this point I am taking the incentive contract as given. 

In the next section I endogenize LP return targeting in an attempt to shed additional light on PE incentive 

contracting practices. 

As previously summarized, in my analysis of PERE fund data I find that fund leverage ranges between 50.0% 

and 75.0%, with a central tendency in the range of 60.0% to 70.0%. Net-of-fee target-IRR’s generally range 

between 13.0% and 20.0%, with fee drag in the range of 3.5% to 4.0%. These are the critical values I want to 

explain through parameter selection and model calibration. I will also address the positive empirical relation I 

found earlier between fund leverage and fund performance.  

Parameter selection will start with management and incentive fee contract terms, and then move into fund asset 

characteristics and debt contracting variables. 

Management Fees: As discussed in some detail earlier, proper accounting for management fees is more 

complex than typically characterized. Many management fees, such as acquisition, monitoring and development 

fees, scale directly to total fund size as opposed to invested capital. Moreover, management fees are paid over 
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the entire life of the fund, and not simply over the cash-based duration of fund investment. For example, 

although fund durations may commonly be on the order of five to seven years, management fees are incurred 

continually over a typical fund life of say 10 years. Consequently, I will assume 1.50% in total management fees 

per annum (as displayed in column (1) of Table 1), taken over a 10-year fund life, to result in 15.0% total 

management fees as a percentage invested capital. Then I rescale these fees based on representative fund 

leverage ratios, resulting in total fixed management fees equal to 5.0% of the fund’s asset acquisition cost.  

Incentive Fee Contract Variables: As previously documented, the carried interest share is commonly set at 

20.0% (see column (3) of Table 1) with almost no variation around the mean-median value. The carry hurdle 

rate is centered at 9.0%, with most observations in the 8.0 to 10.0% range. For baseline model estimation 

purposes, in this sub-section I will specify a carried interest share of 20.0% and a carried interest hurdle rate of 

9.0%, with no catch-up fee provision term. Catch-up fees will be considered in the next section of the paper. 

Fund Assets’ Unlevered Equilibrium Rate of Return: PERE funds invest in commercial real estate assets. 

Reference to monthly reports issued by Green Street, which produces regular estimates of expected returns to 

the industry and particular property types, suggests unlevered returns of around 6.0%. Real Estate Research 

Corporation (RERC) also produces estimates of unlevered discount rates for major property types. As of Q4 

2020, their estimates range from 5.0% to 8.5% for A+ to A quality property.  

Value-add and opportunity PERE funds typically acquire assets that require repositioning, and oftentimes 

significant development or redevelopment. This increases asset risk relative to otherwise equivalent income-

producing assets. According to RERC, unlevered discount rates for B and C quality assets range from 

approximately 7.0% to 12.0%. In referencing Pagliari’s (2020) analysis of value-add and opportunity funds, he 

pegs unlevered expected asset returns at approximately 10.0%. I am not aware of any other direct evidence on 

the topic, so will designate μ=.10 as my base-case value. 

Fund Assets’ Unlevered Standard Deviation of Return: Empirical estimates of PERE fund return volatility 

exist in industry publications (e.g., CEM Benchmarking 2020). But such estimates are generally made on a 

portfolio or index of levered funds on a net-of-fee basis. With that in mind, fund volatility estimates are typically 
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in the 17.5% to 25.0% range. Pagliari (2020) generates direct volatility estimates on value-add and opportunity 

PERE funds in the 15.0% to 20.0% range. Based on my own analysis of Preqin data, I find the standard 

deviation of IRRs realized on 399 value-add and opportunity PERE funds to be in the 16 to 17 percent range. 

Altogether, these data points result in σ=.175 as my base-case value.  

I note that the base-case fund volatility is significantly below asset volatilities estimated or assumed in VC and 

buyout funds (e.g., Cochrane (2005), Metrick and Yasuda (2010), Sorensen, Wang and Yang (2014)). But, given 

the highly specific idiosyncratic risks associated with these investments, they generally have a low correlation 

structure that significantly reduces variation in payoffs at the fund level. Resulting variation in fund-level 

payoffs is therefore much more in line with my PERE-based fund payoff volatility estimate.21 Furthermore, 

PERE funds often specialize by property type and geographical area or region, resulting in a strong correlation 

structure relative to that observed in buyout and VC funds.  

Alpha: Alpha is estimated on a gross-of-fee basis. There are no direct estimates of gross-of-fee value-add and 

opportunity PERE fund alphas that I know of. As noted earlier, there are good reasons to believe that 

operational, governance and financial engineering benefits to PERE are limited relative to benefits available in 

PE. Limited benefits are closely related to the existence of a viable and liquid parallel public market for the 

ownership of commercial real estate. That said, the repositioning and redevelopment of assets held PERE funds 

do offer opportunities to add value relative to holding run-of-the-mill income-producing property.  

Two recent studies implicitly document PERE fund alpha’s on a net-of-fee basis. Gupta and Van Nieuwerburgh 

(2021) estimate that closed-end PERE funds lose 17 cents on average for every dollar invested. Given fund 

durations of five to seven years on average, this equates to approximately a 2.0% to 3.0% negative net-of-fee 

alpha. Applying a standard mean-variance framework, Pagliari (2020) and Bollinger and Pagliari (2019) 

generate similar net-of-fee alpha estimates for PERE value-add and opportunity funds. Both papers make risk 

                                                           
21 For example, Sorensen et al. (2014) assume 60% volatility at the deal-level, with 20% pairwise correlations and 15 deals 
in a fund. This reduces volatility to 25% at the fund level.  
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adjustments and do not explicitly account for liquidity differences between PERE funds and the liquid 

benchmark indices.  

The issue of whether institutional PERE LPs, particularly pension funds which represent approximately 50% of 

all investment in PERE value-add and opportunity funds, demand a standard asset risk premium, and how much 

it might be, is an unsettled issue.22 So is the issue of illiquidity risk and fund pricing. There are some (Asness 

(2019), Riddiough (2021)) that have noted apparent institutional preferences for illiquid PE investment vehicles 

that veil price volatility of PE funds relative to liquid and more visibly volatile public market alternatives. The 

argument is that a 2%-3% negative net-of-fee PERE return is the price that institutional investors are willing to 

pay avoid measured volatility.  

Altogether, this leads me to choose a base case α=.02. Given the unsettled state of PERE asset pricing, this 

estimate seems reasonable based on observed net-of-fee performance ranging from 0.0% to −3.0 %, with 

observed fee drag in the 3.5%-4.0% range. Going forward, with α=.02 as the base case, we will examine alphas 

in fairly tight range of up to four percent.   

Fund Duration and Debt Term: I am in possession of Preqin data on 78 PERE Value-Add and Opportunity 

funds that have liquidated and for which I have a full set of cash flows. In these data the average fund life is 10.5 

years. Durations and weighted average fund lives are significantly shorter, however. These data generate an 

average fund duration of 4.7 years (as measured by the method suggested in Phalippou and Gottschalg (2009)) 

and an average weighted average life of just under 5.0 years. Other data I have seen indicate weighted average 

PERE fund lives in the four to eight year range. Given these data points, I will take T=6 years as my base-case 

value. 

Risk-free Rate of Return: The Treasury rate is often referenced as the risk-free rate. Recent research suggests 

that the risk-free rate exceeds the Treasury rate due to a convenience yield. In recognition of this and the fact 

                                                           
22 See Riddiough (2021) for detail on the PERE pension fund ownership share. On the risk-return relation, as previously 
discussed, see Gompers, Kaplan and Mukharlyamov (2016) and Korteweg (2019). Phalippou (2021) adds, “The PE 
industry is less of a puzzle, however, if one recognizes the multiple layers of ageny conflicts and the complexity of 
measuring risk and returns of illiquid assets, whose effects are exacerbated by the lack of knowledge on that particular issue 
by some of the decision makers.”   
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that for the last ten-plus years we have been living in a particularly low interest rate environment, the risk-free 

rate is specified as r=.02. 

Costs of Financial Distress: Financial distress costs were previously pegged at k=.30. As discussed earlier, this 

estimate is higher than the 10.0% to 20.0% costs estimated by Andrade and Kaplan (1998) with buyout funds, 

and is at the high end of the range estimated by Brown et al. (2006) in their analysis of commercial mortgage 

loan distress costs. The high-end cost estimate is justified based on the higher risks associated with the types of 

assets held in Value-Add and Opportunity PERE funds. 

Table 4 displays the calibrated model results. There are six reported statistics of interest, which are identified 

across the top of the table. Based on assets that are acquired by the fund at time t=0 for a cost of V0=100, the 

first statistic is the time t=0 debt value, D0. Debt quantity is determined endogenously by the GP in order to 

maximize expected incentive fee payments (see Proposition 2). In the base case, D0=63.09. This value compares 

to the mean fund leverage of 62.37% and 63.96% found in the PERE data. For alternative parameter values 

reported in the left-hand column of Table 4, equilibrium debt values as a percentage of asset acquisition cost are 

tightly clustered in the 58% to 68% range.  

The second statistic is the expected incentive fee payment, ΦV (see column (2) of Table 4). This value ranges 

from 12.25 to 17.09 in the model calibration, with the base case value of 14.54. In the base case the LP is 

expected to receive all of the first 63.34 in profits after debt repayment as preferred interest when available 

(36.91 in invested capital earning 9.0% compounded continuously over a six-year fund life).   

To put total fees into perspective, the third statistic displayed in column (3) shows expected total fee payments 

as a proportion of the expected terminal fund equity, ℰ𝑇𝑇 (expected terminal fund value less the debt payoff 

amount). This percentage is seen to vary within a tight range of 14 to 16 percent. Twenty-five to 30 percent of 

all fees are management fees, with the remainder attributable to carried interest. These proportions are in line 

with estimates provided by Phalippou (2021) in his analysis of PE fee payouts. Carried interest as a percentage 

of terminal fund enterprise value is, however, somewhat on the low side as compared to Phalippou’s findings. 

His estimates include accounting for catch-up fees, however, which I have yet to address.  
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Table 4 – Baseline Calibrated Model Outcomes 
 

 

The fourth, fifth and sixth statistics as reported in columns (4)-(6) of Table 3 are targeted gross-of-fee fund 

performance, λG, targeted net-of-fee fund performance, λN, and fee drag, λG –λN. Modeled net-of-fee performance 

matches well with empirically documented target returns, ranging from 14.56% to 19.155% in the model 

calibration estimates. These target returns nest within the previously documented empirical range of 13.0% to 

20.0% Calibrations further indicate fee drag in the 3.71% to 4.47% range, which is only slightly to the high side 

relative to the 3.5% to 4.0% range documented in Table 2.  

Note the negative relations between fund leverage and target return as they depend on asset price volatility and 

the risk-free rate. The asset volatility relation confirms prior comparative static results based on realistic 

parameter value combinations. The underlying intuition for the volatility result is that increases in fund asset 

volatility increase the marginal cost of debt relative to the fixed preferred equity interest rate, to reduce fund 

leverage. Similarly, an increase in the risk-free rate reduces fund leverage due to the discounting effect, which 

also decreases LP returns.  

 
Parameter 

Set 

Initial 
Debt Value 
𝑫𝑫𝟎𝟎 (1) 

Incentive 
Fee 

𝚽𝚽𝑽𝑽 (2) 

~ Total 
Fees 

𝚽𝚽𝑻𝑻 𝓔𝓔𝑻𝑻⁄  (3) 

Gross 
T-IRR 
𝝀𝝀𝑮𝑮 (4) 

Net 
T-IRR 
𝝀𝝀𝑵𝑵 (5) 

Fee 
Drag 

𝝀𝝀𝑮𝑮 − 𝝀𝝀𝑵𝑵 (6) 
 

Base Case 
 

 
63.09 

 
14.54 

 
.1515 

 
.2085 

 
.1674 

 
.0411 

k=.20 67.18 14.81 .1600 .2214 .1765 .0449 
k=.40 

 
59.91 14.33 .1454 .1998 .1612 .0386 

α=.01 59.42 12.25 .1420 .1827 .1456 .0371 
α=.03 

 
67.03 17.09 .1614 .2372 .1915 .0457 

σ=.15 67.66 14.54 .1574 .2242 .1795 .0447 
σ=.20 58.79 14.71 .1475 .1960 .1575 .0385 

       
r=.01 64.78 15.23 .1550 .2184 .1756 .0428 
r=.03 61.17 13.85 .1477 .1983 .1590 .0393 

       
Ψ=.075 60.10 15.41 .1526 .2016 .1616 .0400 
Ψ=.105 65.55 13.69 .1500 .2143 .1723 .0420 

 

Notes: Parameter values resulting from the empirical literature and my own estimates are: V0=100; r=.02 : μ=.10; 
α=.02; σ=.175; k=.30; T=6; ψ=.09, ρ=.20. 
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Given endogenously determined fund leverage, I can assess empirically documented positive relations between 

the carry hurdle rate and target-IRR, fund leverage and target-IRR, and the resulting implied positive relation 

between the carry hurdle rate and fund leverage. These relations are all consistent with correlation results 

reported previously. The key to understanding these relations is to first note that, due to the tradeoff between 

marginal debt and preferred equity costs, endogenously determined fund leverage increases in the carry hurdle 

rate. A higher carry hurdle rate along with higher fund leverage combine to increase targeted net-of-fee returns.    

In summary, results reported in Table 4 indicates that my model successfully explains observed PERE fund 

leverage, target LP returns, the effects of fee drag on fund performance, and positive relations between the carry 

hurdle rate, fund leverage and performance. Causation in the model throughout goes from the incentive fee 

contract and fund characteristics to fund leverage and finally to fund performance.  

VI. Step 4: LP Return Targeting, GP Skill Heterogeneity, and Catch-Up Provisions 

VI.A. LP Return Targeting 

In this section I consider the question of why the PE market has settled on a two-part incentive contract with 

nearly invariant parameter values as an industry standard. Doing so will require me to take a stand on what 

exactly LPs are optimizing. But as a first step, it is useful to know who the LPs are under consideration? 

Riddiough (2021) documents that, over the past 20 years, pension funds have had a 50 to 70 percent investor 

share of all value-add and opportunity PERE funds. Thus, given that pension funds are the dominant investors in 

these funds, I next ask, what does the pension fund investment objective function look like.  

As previously highlighted, the literature has clearly established that pension funds are not prototypical expected 

(concave) utility maximizers that engage in a granular examination of risk-return tradeoffs. Rather, numerous 

studies have documented that pension funds focus primarily on performance as measured by IRR, with only 

coarse reference to risk. Axelson et al. (2009) provide the following lead-off quote expressing the GP’s 

perspective: “Practitioner: Ah yes, the M-M theorem. I learned about that in business school. We don’t think 

that way at our firm. Our philosophy is to lever our deals as much as we can, to give the highest returns to our 

LPs.” Gompers et al. (2016) affirm this approach by documenting that, “limited partners focus more on absolute 
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performance as opposed to risk-adjusted returns” and that “[buyout] investors target a 22% IRR on their 

investments on average.” Korteweg (2019) sums up the state of our knowledge on the risk-return tradeoffs in 

PE: “This lack of agreement [on how to estimate risk and return in PE or on relevant performance benchmarks] 

has likely contributed to the lack of formal quantitative risk adjustment in practice.”23  

With these general findings in mind, and consistent with earlier empirical evidence on expected PERE fund 

performance, I will assume that LPs optimize through a process of return targeting. To produce the return 

target, the LP poses the following question: Given a hypothetical equivalent fund that generates zero alpha with 

no associated fees, what is the maximum return available when optimizing with respect to fund leverage? This 

exercise not only produces a unique return target, which I denote as 𝜆𝜆∗, but also a fund leverage target. Denoted 

by 𝐷𝐷�0, the fund leverage target establishes an observable upper bound on fund leverage that the LP is willing to 

accept, subject to meeting the return target. In other words, return targeting generates the following two 

constraints that must be simultaneously met for the LP to invest: 𝜆𝜆𝑁𝑁 ≥ 𝜆𝜆∗ and 𝐷𝐷0 ≤ 𝐷𝐷�0. When both constraints 

bind, the LP expects to break even, making a zero risk-adjusted return. When there is slack in one or both of the 

constraints, the LP expects a positive risk-adjusted return. 

To determine the target return, the LP optimizes equation (8) with respect to B, given that 𝛼𝛼 = Φ𝐹𝐹 = Φ𝑉𝑉 = 0. 

The following lemma summarizes the result. 

Lemma to Proposition 3: Given μ>r, k>0, and 𝜶𝜶 = 𝚽𝚽𝑭𝑭 = 𝚽𝚽𝑽𝑽 = 𝟎𝟎, an internal return target optimum 

exists with 𝑩𝑩 = 𝑩𝑩� that satisfies 𝑬𝑬𝟎𝟎
𝓔𝓔𝑻𝑻

=
𝝏𝝏𝑬𝑬𝟎𝟎
𝝏𝝏𝝏𝝏
𝝏𝝏𝓔𝓔𝑻𝑻
𝝏𝝏𝝏𝝏

.  

Proof: The FOC follows directly from equation (8). Existence follows from the fact that 𝑬𝑬𝟎𝟎,𝓔𝓔𝑻𝑻, −𝝏𝝏𝑬𝑬𝟎𝟎
𝝏𝝏𝝏𝝏

, −𝝏𝝏𝓔𝓔𝑻𝑻
𝝏𝝏𝝏𝝏

 

all exceed zero for 𝑩𝑩 ∈ [𝟎𝟎,𝑩𝑩𝒌𝒌
∗). At B=0, the RHS of the FOC above exceeds the LHS, while the LHS 

exceeds the RHS for B sufficiently close to 𝑩𝑩𝒌𝒌
∗ . These relations along with continuity imply at least one 

internal zero crossing point. 

                                                           
23 For additional supporting evidence, see, among others, Axelson et al. (2014), Lerner et al. (2009), Boyer et al. (2021), 
Phalippou (2021), Andonov et al. (2017), Andonov and Rauh (2017), and Bodnaruk and Simonov (2016). I would also note 
the constant carry hurdle, which indicates a lack of risk adjustment in the cost of LP equity as a function of fund leverage, is 
revealing about LP risk attitudes. 
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I note that uniqueness is not guaranteed in general. As a consequence, I find an internal optimum by applying 

the FOC and then verify that it is a maximum. For any of the realistic parameter values used to calibrate the 

model in this study, I find only one internal optimum. The optimum follows from the fact that the RHS of the 

FOC starts at a higher initial value at B=0, but declines at a faster rate in B than does the LHS of the FOC.  

Recall that, after matching first moments, model parameters of V0=100; r=.02 ; μ=.10; σ=.175; k=.30; T=6, 

were used in the base-case analysis. With these parameter values, optimized LP return and leverage targets as 

described above result in 𝜆𝜆∗ = .1672 and 𝐷𝐷�0 = 64.95. These calibrated values are remarkably consistent with 

target return and fund leverage outcomes previously documented in the PERE data. From Table 1 the PERE data 

show a mean target IRR of 16.71%, which is essentially equivalent to the calibrated return target of 16.72%. 

From Tables 2 and 3, median as well as modal fund leverage equals 65.0%, with 131 of 364 observations 

(36.0%) clustering at that value. This is also essentially equivalent to the calibrated value of 64.95%.  

The LP’s optimized return target and fund leverage constraints are now incorporated into baseline PE incentive 

contracting by considering the GP’s constrained optimization problem. Here the GP, which is endowed with 

positive alpha, extracts fees to the point where, subject to not exceeding the fund leverage target, the target 

return constraint is binding. In solving the optimization problem the carry hurdle rate, ψ, is specified 

exogenously to fall within an empirically justifiable range. The carried interest share, ρ, as well as fund leverage, 

B, are determined endogenously. Once the optimal ρ and B are identified, the GP commits to those values in the 

offering documents.  

Formally, the GP’s optimization problem can be written as follows: 

 𝑀𝑀𝑀𝑀𝑀𝑀
𝜌𝜌,𝐵𝐵

 Φ𝑉𝑉(𝜌𝜌,𝐵𝐵;𝜓𝜓) = 𝜌𝜌 �𝑉𝑉0𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑇𝑇𝑁𝑁[ℎ1] − 𝜒𝜒0𝑁𝑁[ℎ2]� (9) 

 s.t. 𝐷𝐷0(𝐵𝐵) ≤ 𝐷𝐷�0, 𝜆𝜆𝑁𝑁(𝐵𝐵, 𝜌𝜌) ≥ 𝜆𝜆∗, 0 < 𝜌𝜌 < 1 (9a) 

     

Note that equation (9) differs from equation (2b) only in that (9) it is a joint maximization problem involving 

both B and ρ. 
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Prior to solving this problem, I make three observations. First, reference to equations (7) and (8) indicate that 

incentive fees are strictly decreasing in λ. Second, Φ𝑉𝑉(𝜌𝜌,𝐵𝐵;𝜓𝜓) is strictly increasing in ρ (see equation (9) 

above), with the interest carry share acting as a linear scaling factor. Third, based on these first two facts, and by 

combining equations (7) and (9), the GP is able to extract fees to the point where the target return constraint 

binds. Specifically, the GP sets 𝜌̅𝜌 such that, 

 𝜌̅𝜌 = ℰ𝑇𝑇−𝑒𝑒𝜆𝜆
∗𝑇𝑇�𝐸𝐸0+𝛷𝛷𝐹𝐹�

𝑉𝑉0𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑇𝑇𝑁𝑁[ℎ1]−𝜒𝜒0𝑁𝑁[ℎ2]
 (10) 

Two additional observations are in order. First, for ψ<λ*, the target return constraint cannot be satisfied when 

ρ=1. That is, at least some profit sharing by the GP through interest carry must occur. Second, GP’s will exit the 

market when they cannot meet the return target constraint with a positive carried interest share. That is, GP’s 

will not contract for 𝜌𝜌 ≤ 0). As a result, based on these structural considerations, the 0 < 𝜌𝜌 < 1 constraint will 

always be satisfied and hence can be ignored. 

To solve (9) subject to (9a) I form the Lagrangian, with the resulting KKT conditions: 

 ℒ(𝐵𝐵,𝜌𝜌) = −Φ𝑉𝑉(𝜌𝜌,𝐵𝐵;𝜓𝜓) + 𝜇𝜇1�𝜆𝜆∗ − 𝜆𝜆𝑁𝑁(𝐵𝐵,𝜌𝜌)� + 𝜇𝜇2(𝐷𝐷0(𝐵𝐵) − 𝐷𝐷�0) (11) 

where 𝜇𝜇1,𝜇𝜇2 ≥ 0 denote Lagrange multipliers. With this I am now in a position to state the major result of this 

subsection. 

Proposition 3 (The Constrained Baseline Contract When LPs Target Returns): When maximizing 

incentive fees the target return constraint always binds, with 𝝁𝝁𝟏𝟏 = 𝑻𝑻[𝓔𝓔𝑻𝑻 −𝚽𝚽𝑽𝑽] > 𝟎𝟎. As a result, the GP 

sets the carry interest share according to equation (10) in order to just meet the target return constraint. 

In general, depending on parameter values, the target fund leverage constraint may or may not be 

binding. When the fund leverage constraint binds, 𝝁𝝁𝟐𝟐 = 𝟏𝟏
𝝏𝝏𝑫𝑫𝟎𝟎
𝝏𝝏𝝏𝝏

�𝝏𝝏𝓔𝓔𝑻𝑻
𝝏𝝏𝝏𝝏

− 𝝏𝝏𝑬𝑬𝟎𝟎
𝝏𝝏𝝏𝝏

�𝓔𝓔𝑻𝑻−𝚽𝚽
𝑽𝑽

𝑬𝑬𝟎𝟎+𝚽𝚽𝑭𝑭�� > 𝟎𝟎. Target return and 

fund leverage constraints simultaneously bind if and only if  𝑬𝑬𝟎𝟎+𝚽𝚽
𝑭𝑭

𝓔𝓔𝑻𝑻
< 𝒆𝒆−𝝀𝝀∗𝑻𝑻 <

𝝏𝝏𝑬𝑬𝟎𝟎
𝝏𝝏𝝏𝝏
𝝏𝝏𝓔𝓔𝑻𝑻
𝝏𝝏𝝏𝝏

. This inequality relation 

is independent of ψ.  

Proof: See Appendix A. 



~ 38 ~ 
 

 

Because incentive fees are strictly decreasing in λ, and because GP incentive fees scale linearly in the carried 

interest share, ρ, it is optimal for the GP to solve the optimization problem as a two-part tariff. It first determines 

the optimal fund leverage, and then given the optimal 𝐵𝐵�  the GP finds 𝜌̅𝜌 according to equation (10).  

In general, the target fund leverage constraint may or may not be binding, depending on parameter values. It will 

not be binding when μ2=0 for some B such that 𝐷𝐷0(𝐵𝐵) < 𝐷𝐷�0. Given the calibrated parameter values used in my 

analysis, I find that the target fund leverage constraint always binds, implying that μ2>0 for 𝐵𝐵�  such that 

𝐷𝐷0(𝐵𝐵�) = 𝐷𝐷�0. Thus the LP essentially breaks even from a risk-return perspective. Interestingly, μ2, the shadow 

value associated with relaxing the fund leverage constraint, equals the marginal cost of debt, 1
𝜕𝜕𝐷𝐷0
𝜕𝜕𝜕𝜕

, multiplied by 

the (partially adjusted) increase in LP return associated with a marginal dollar of debt, �𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

�ℰ𝑇𝑇−𝛷𝛷
𝑉𝑉

𝐸𝐸0+𝛷𝛷𝐹𝐹��. 

One can simply use the inequality relation, 𝐸𝐸0+Φ
𝐹𝐹

ℰ𝑇𝑇
< 𝑒𝑒−𝜆𝜆∗𝑇𝑇 <

𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕
𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝜕𝜕

, to verify that the GP participates in the fund 

with 𝜌̅𝜌 > 0 and with the fund leverage constraint binding at 𝐷𝐷0(𝐵𝐵�) = 𝐷𝐷�0. The participation constraint, 𝐸𝐸0+Φ
𝐹𝐹

ℰ𝑇𝑇
<

𝑒𝑒−𝜆𝜆∗𝑇𝑇, requires finding an 𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀 > 0 such that 𝜌̅𝜌 = 0. Then for any 𝛼𝛼 > 𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀 the GP participates and sets 𝜌̅𝜌 

according to equation (10), with a net-of-fee return to the LP of 𝜆𝜆 = 𝜆𝜆∗. For the fund leverage constraint to bind, 

it must be that 𝑒𝑒−𝜆𝜆∗𝑇𝑇 <
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕
𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝜕𝜕

, which follows from the second KKT condition. In all cases, due to separation, the 

inequality relations do not depend on the carry hurdle rate, ψ.  

Calibrated base-case parameter values used previously are V0=100; r=.02 : μ=.10; σ=.175; k=.30; T=6. With 

these values I previously found that 𝐷𝐷�0 = 64.95 and 𝜆𝜆∗ = .1672. GP participation is satisfied with α sufficiently 

large so that ρ>0. According to the base-case numerical analysis, 𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀=.0088 to produce 𝐸𝐸0+Φ
𝐹𝐹

ℰ𝑇𝑇
= 𝑒𝑒−𝜆𝜆∗𝑇𝑇. At 

that point I verify that 𝑒𝑒−𝜆𝜆∗𝑇𝑇 <
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕
𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝜕𝜕

.     
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The optimal fund structure as described is ex ante. There may, however, be ex post incentives for the GP to act 

opportunistically by deviating from the targeted fund leverage. This occurs when the incentive compatible fund 

leverage from the unconstrained problem (see step 2 in section III) is less than the target.24 The ability of the GP 

to act on its incentives will depend on how the initial contract is written. If the fund leverage target is “soft,” 

meaning that it is written as 𝐷𝐷0(𝐵𝐵) ≤ 𝐷𝐷�0, and if the carry interest share is set according to equation (10) under 

the presumption of fund leverage being set at the constrained maximum, then the GP may have ex post 

incentives to shade fund leverage to the low side. Doing so provides the GP the opportunity to increase fees at 

the expense of net-of-fee fund returns.  

If the LP recognizes this incentive and is concerned that the GP will act on it, the LP can modify contract 

language to contain a “hard” fund leverage target that cannot deviate from 𝐷𝐷0(𝐵𝐵) = 𝐷𝐷�0 unless approved by the 

LP. Interestingly, both types of contracts are known to be written in the PE industry.  

The base-case of α=.02 exceeds 𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀=.0088, ensuring that ρ>0 and that fund leverage is set ex ante at the 

target. Going forward I round that target to 𝐷𝐷�0 = 65.00. I now vary the carried interest hurdle value, ψ, within a 

reasonable range to analyze what the model has to say about actual incentive contracting practices. Using base-

case parameter values and varying ψ between .05 and .12, in the left-hand panel of Table 5 I report the 

endogenously determined carried interest share, 𝜌̅𝜌. This share value is seen to range between .20 and .26, which 

is only slightly above the 20.0% share observed in practice. At ψ=.09 (the median value in the PERE data), I 

obtain 𝜌̅𝜌 = .2280. It is worth noting that α=.0183 results in 𝜌̅𝜌 = .200 when ψ=.09. These outcomes lend 

support not only to observed PE incentive fee contracting practices, but are also consistent with return targeting 

practices that have been documented in the sector.  

In the right-hand panel of Table 5 I consider incentives to deviate from the ex ante contract when target leverage 

is stipulated as a soft constraint. When ψ=.11 or .12, the GP has no incentive to deviate to the low side. 

However, at lower ψ values, the GP has an incentive to deviate to the lower incentive compatible leverage 

levels. Deviating ex post increases GP incentive fees to be above those obtained given a hard fund leverage 

                                                           
24 I have previously verified that this outcome does not satisfy necessary constrained optimality conditions ex ante.   
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target, and decreases expected returns to the LP to be below the target. The fact that fees only increase by a 

small amount when the GP behaves opportunistically, which could come at some future cost to the GP, suggests 

that incentives to deviate may be low, and that as a consequence fund leverage will generally cluster at  𝐷𝐷�0 =

65.00. This is precisely what I see in the data, offering additional support to the analysis.  

Table 5 

Varying the Baseline Incentive Contract Parameters 
Given LP Return and Fund Leverage Targeting 

 
Base Case: α=.02 

        Panel A: Ex Ante Contracting        Panel B: Ex Post Leverage Shading 

ψ 𝝆𝝆� 𝑫𝑫�𝟎𝟎 𝚽𝚽𝑽𝑽 𝝀𝝀𝑵𝑵 𝝆𝝆� Min{𝑫𝑫�𝟎𝟎,𝑫𝑫𝟎𝟎
∗ } 𝚽𝚽𝑽𝑽 𝝀𝝀𝑵𝑵 

. 05 .2003 65.00 16.56 .1672 .2003 53.13 16.95 .1490 
.06 .2062 65.00 16.56 .1672 .2062 56.29 16.81 .1539 
.07 .2127 65.00 16.56 .1672 .2127 58.94 16.70 .1580 
.08 .2200 65.00 16.56 .1672 .2200 61.17 16.63 .1614 
.09 .2280 65.00 16.56 .1672 .2280 63.09 16.57 .1644 
.10 .2370 65.00 16.56 .1672 .2370 64.79 16.56 .1669 
.11 
.12 

.2471 

.2583 
65.00 
65.00 

16.56 
16.56 

.1672 

.1672 
.2471 
.2583 

65.00 
65.00 

16.56 
16.56 

.1672 

.1672 

Notes: The baseline incentive contract is considered given the constrained optimization of GP incentive fees. Fund leverage and carried 
interest share are determined endogenously. Alternative carried interest hurdles are considered, ranging from ψ=.05 to ψ=.12. In addition 
to carried interest share, 𝜌̅𝜌, and fund leverage, 𝐷𝐷�0, GP incentive fees, Φ𝑉𝑉, and LP net-of-fee return, 𝜆𝜆𝑁𝑁, are determined. Panel A shows 
constrained optimization results, while Panel B shows how the GP may have incentives to hold up the LP by shading leverage to the low 
side after the contract is signed. Shaded values are those outcomes with leverage less than the target of 65.00. Base case parameter values 
are: V0=100; r=.02 : μ=.10; α=.02; σ=.175; k=.30; T=6. 

 

Given the base-case results reported in RHS of Table 5, note the “hinge” in ψ at around .10 (indicated by the 

shaded v. unshaded regions). This, along with 𝜌̅𝜌 close to .20, provides insight into the emergence of the 9-20 

contract. Contract parameter values less than or equal to ψ=.10 provide increasingly strong incentives for the 

GP to deviate from the ex ante contract. In other words, the model indicates that GP and LP may have mutually 

settled in on a 9.0% carried interest hurdle rate because lower hurdle rates increase GP incentives to behave 

opportunistically, while higher rates benefit the LP at the GP’s expense. 

In Table 6 the baseline incentive contract is examined after introducing GP skill heterogeneity. In panel A I 

consider the lower-skill case of α=.015, and in panel B I consider the higher-skill case of α=.030. As with the 

base-case α=.020 both the target return and fund leverage constraints bind, with the LP breaking even. When 
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GP skill level is lower (panel A), the interest carry share required to hit the target return is well below the 20.0% 

mark commonly used in practice, while in the higher-skill case (panel B) it is significantly above the 20.0% 

share mark. The implication is that the lower-skill GP is overcompensated with the 9-20 contract, which in turn 

implies an inability of the GP to meet the LP’s target return. According to the model, with return targeting these 

lower-skill GP’s will have to exit the market if the standard baseline contract is implemented. On the other hand, 

as seen in panel B higher-skill GPs are undercompensated given the standard 9-20 contract. They may also exit, 

or threaten to exit the market, unless a supplemental compensation arrangement can be implemented.  

Table 6 

Varying the Baseline Incentive Contract Parameters 
Given LP Return and Fund Leverage Targeting 

 
     Panel A: α=.015      Panel B: α=.03 

ψ 𝝆𝝆� 𝑫𝑫�𝟎𝟎 𝚽𝚽𝑽𝑽 𝝀𝝀𝑵𝑵 𝝆𝝆� 𝑫𝑫�𝟎𝟎 𝚽𝚽𝑽𝑽 𝝀𝝀𝑵𝑵 
. 05 .1217 65.00 9.27 .1672 .3237 65.00 31.08 .1672 
.06 .1254 65.00 9.27 .1672 .3324 65.00 31.08 .1672 
.07 .1296 65.00 9.27 .1672 .3419 65.00 31.08 .1672 
.08 .1342 65.00 9.27 .1672 .3525 65.00 31.08 .1672 
.09 .1394 65.00 9.27 .1672 .3642 65.00 31.08 .1672 
.10 .1452 65.00 9.27 .1672 .3772 65.00 31.08 .1672 
.11 .1516 65.00 9.27 .1672 .3918 65.00 31.08 .1672 
.12 .1589 65.00 9.27 .1672 .4080 65.00 31.08 .1672 

Notes: The baseline incentive contract is considered given the constrained optimization of GP incentive fees and carried interest share. Two 
different GP skill levels are considered: α=.015 and α=.030. Alternative carried interest hurdles are also considered, ranging from ψ=.05 
to ψ=.12. In addition to carried interest share, 𝜌̅𝜌, and fund leverage, 𝐷𝐷�0, GP incentive fees, Φ𝑉𝑉, and LP net-of-fee return, 𝜆𝜆𝑁𝑁, are determined. 
Base case parameter values are: V0=100; r=.02 : μ=.10; σ=.175; k=.30; T=6. 
 

Thus, the model predicts that only GPs in a fairly tight range around α=.02 will, in a world in which LPs target 

returns, remain eligible as well as willing to adopt the standard 9-20 baseline contract. Higher-skill GPs in 

particular will be motivated to explore an alternative or augmented contract that can accommodate GP skill 

heterogeneity. As documented earlier, such a contract is known to exist in the form of carried interest with a 

catch-up fee provision. I turn to this topic in the next sub-section.   

VI.B. GP Skill Heterogeneity and Catch-Up Fees 

Modeling thus far provides insight into the emergence of the baseline 9-20 carried interest contract. But the 

robustness of the simple 9-20 contract over time and across funds is questionable. GP skill heterogeneity is a 
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particularly important margin along which the invariant 9-20 contract seems too rigid for my baseline model to 

fit the data.  

Recalling prior empirical results showing significant variation in the PERE catch-up rate, I will now augment 

the baseline contract to incorporate the catch-up fee provision. Catch-up fees result when, after the full payment 

of preferred returns to LP’s, disproportionately high profits accrue to the GP until the GP’s total profit share 

“catches up” to the carried interest share percentage as applied to total equity profits. 

The catch-up fee provision formally works as follows. Denote the catch-up rate as ξ, ρ<ξ ≤1.0. The catch-up rate 

applies, and only applies, once liquidated fund proceeds of VT exceed prioritized debt payouts of B to the lender 

and preferred interest payouts of eψTE0 to the LP. The sum of those two quantities was previously denoted by χ0. 

In the catch-up region, where the catch-up rate applies, a proportion ξ on every excess liquidation dollar is paid 

to the GP until the GP has earned 100*ρ percent of all profits in excess of B. If and when catch-up is complete, 

the GP goes back to earning 100*ρ percent of all remaining profits. Complete catch-up, when achieved, reduces 

the LP’s preferred interest payout from eψTE0  to (1-ρ)eψTE0. 

Denote the upper bound of the catch-up region by Χ0. This upper bound is determined such that,  

 [Χ0 − 𝜒𝜒0]𝜉𝜉 = [Χ0 − 𝐵𝐵]𝜌𝜌 (12a) 

This is easily solved for Χ0, and written as, 

 Χ0 = 𝐵𝐵 + 𝜉𝜉𝐸𝐸0𝑒𝑒𝜓𝜓𝜓𝜓

𝜉𝜉−𝜌𝜌
 (12b) 

Note that, in contrast to 𝜒𝜒0, which serves as the lower bound of the catch-up region and only contains one 

incentive fee contracting variable, ψ, Χ0, the upper bound of the region, is a function of all three contracting 

variables, ψ, ρ, and ξ.  

With the catch-up region defined, incentive fees expected to be paid out to the GP at time T can be determined. 

This expectation is,  
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   Φ𝐶𝐶𝐶𝐶
𝑉𝑉 (𝐵𝐵, 𝜉𝜉;𝜓𝜓,𝜌𝜌) = 𝜉𝜉 ∫ �𝑉𝑉�𝑇𝑇 − 𝜒𝜒0�𝑓𝑓�𝑉𝑉�𝑇𝑇|𝑉𝑉0�𝑑𝑑𝑉𝑉�𝑇𝑇

∞
𝜒𝜒0

− (𝜉𝜉 − 𝜌𝜌)∫ �𝑉𝑉�𝑇𝑇 − Χ0�𝑓𝑓�𝑉𝑉�𝑇𝑇|𝑉𝑉0�𝑑𝑑𝑉𝑉�𝑇𝑇
∞
Χ0

 (13a) 

Solving the integrals in (13a) results in the following relation: 

  Φ𝐶𝐶𝐶𝐶
𝑉𝑉 (𝐵𝐵, 𝜉𝜉;𝜓𝜓,𝜌𝜌) = 𝜉𝜉 �𝑉𝑉0𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑇𝑇𝑁𝑁[ℎ1] − 𝜒𝜒0𝑁𝑁[ℎ2]� 

  −(𝜉𝜉 − 𝜌𝜌) �𝑉𝑉0𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑇𝑇𝑁𝑁[𝑚𝑚1] − Χ0𝑁𝑁[𝑚𝑚2]� (13b) 

where h1 and h2 are as previously defined in (2b') and  

 𝑚𝑚1 =
𝑙𝑙𝑙𝑙�𝑉𝑉0 Χ0� �+�(𝜇𝜇+𝛼𝛼)+12𝜎𝜎

2�𝑇𝑇

𝜎𝜎√𝑇𝑇
 , 𝑚𝑚2 = 𝑚𝑚1 − 𝜎𝜎√𝑇𝑇 (13b') 

Note that the addition of a catch-up fee provision negates separation that previously applied. Importantly, 

however, linear homogeneity of Φ𝐶𝐶𝐶𝐶
𝑉𝑉  in V0 and B is retained. I also note that h1>m1 and h2>m2 due to 𝜒𝜒0 < Χ0. 

This in turn implies N[h1]>N[m1] and N[h2]>N[m2]. 

Unconstrained incentive compatible fund leverage can now be calculated by optimizing the incentive fee 

equation in (9b) with respect to B. Doing so results in, 

 −𝜉𝜉𝜉𝜉[ℎ2] 𝜕𝜕𝜒𝜒0
𝜕𝜕𝜕𝜕

+ (𝜉𝜉 − 𝜌𝜌) 𝜕𝜕Χ0
𝜕𝜕𝜕𝜕

= 0 (14a) 

which can be rewritten as, 

 1 − 𝑒𝑒(𝜓𝜓−𝑟𝑟)𝑇𝑇 �𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑇𝑇

� = 𝜌𝜌𝜌𝜌[𝑚𝑚2]
𝜉𝜉�𝑁𝑁[𝑚𝑚2]−𝑁𝑁[ℎ2]�

< 0 (14b) 

Note that the LHS of (14b) corresponds exactly to the optimality condition that applies in the baseline 

contracting case (see Proposition 2). Now, after adding the catch-up provision into the incentive fee contract, the 

RHS of (14b) is negative rather than zero as in the baseline case. With this, the following proposition 

characterizes the GP’s unconstrained incentive compatible fund capital structure in the presence of a catch-up 

provision:  

Proposition 4 (Unconstrained Fund Leverage Choice with Catch-Up): An incentive compatible fund 

capital structure exists with a catch-up provision characterized by ξ, 𝝆𝝆 < 𝝃𝝃 ≤ 𝟏𝟏. There are three cases to 
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consider: 1) When 𝝍𝝍 > 𝒓𝒓, and when 𝟏𝟏 − 𝒆𝒆(𝝍𝝍−𝒓𝒓)𝑻𝑻 < 𝝆𝝆𝝆𝝆[𝒎𝒎𝟐𝟐]
𝝃𝝃�𝑵𝑵[𝒎𝒎𝟐𝟐]−𝑵𝑵[𝒉𝒉𝟐𝟐]�

 as evaluated at B=0, incentive compatible 

fund leverage is such that 𝑩𝑩𝑪𝑪𝑪𝑪
∗ > 𝟎𝟎. In this case 𝑩𝑩𝑪𝑪𝑪𝑪

∗ < 𝑩𝑩∗ for all ψ>r. 2) When 𝝍𝝍 > 𝒓𝒓 and 𝟏𝟏 − 𝒆𝒆(𝝍𝝍−𝒓𝒓)𝑻𝑻 ≥
𝝆𝝆𝝆𝝆[𝒎𝒎𝟐𝟐]

𝝃𝝃�𝑵𝑵[𝒎𝒎𝟐𝟐]−𝑵𝑵[𝒉𝒉𝟐𝟐]�
 at B=0, 𝑩𝑩𝑪𝑪𝑪𝑪

∗ = 𝟎𝟎. 3) When 𝝍𝝍 ≤ 𝒓𝒓, 𝑩𝑩𝑪𝑪𝑪𝑪
∗ = 𝑩𝑩∗ = 𝟎𝟎. 

Proof: See Appendix A 

Because the LHS of equation (14b) is strictly increasing in B, it follows that 𝐵𝐵𝐶𝐶𝑈𝑈∗ ≤ 𝐵𝐵∗. Thus, all else equal, 

unconstrained incentive compatible fund debt level with a catch-up provision is typically lower, not higher, than 

fund leverage realized under the standard incentive fee contract.  

This result is not necessarily intuitive, and can be better seen by rearranging equation (14b) as follows below, 

and then comparing it to equation (3): 

 𝑒𝑒𝜓𝜓𝜓𝜓

1− 𝜌𝜌𝜌𝜌[𝑚𝑚2]
𝜉𝜉�𝑁𝑁[𝑚𝑚2]−𝑁𝑁[ℎ2]�

= 𝑒𝑒𝑟𝑟𝑟𝑟

�𝑁𝑁[𝑑𝑑2]−𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑇𝑇

�
= 1

𝜕𝜕𝐷𝐷0
𝜕𝜕𝜕𝜕

 (14c) 

The two terms on the RHS of (14c) exactly matches the RHS of equation (3), showing the marginal increase in 

the cost of debt as fund leverage increases. In the baseline contract, this increase in the cost of fund leverage is 

compared to the benefit associated with decreasing the equity base from which the preferred return is calculated 

(see the LHS of equation (3)). With a catch-up provision the LHS of (3) is modified to include the denominator 

seen in the LHS of (14c). This denominator is always greater than one since 𝜌𝜌𝜌𝜌[𝑚𝑚2]
𝜉𝜉�𝑁𝑁[𝑚𝑚2]−𝑁𝑁[ℎ2]�

< 0. Thus the LHS 

of (14c) is always less than the LHS of equation (3), implying the benefits of fund leverage with a catch-up fee 

provision are less than the benefits associated with the baseline contract. This follows because the catch-up 

provision allows the GP to recapture preferred dividends allocated on a priority basis, which lowers the marginal 

cost of LP preferred equity. Given realistic parameter values, it is further the case that the marginal cost of 

preferred interest erodes more quickly, and with greater certainty, as the catch-up rate, ξ, increases.  

This is a very interesting relation that to my knowledge has not been explored in the literature. In contrast to the 

baseline contract, where fund leverage is increasing GP skill, fund leverage decreases in GP skill when the 

baseline contract is augmented to include a catch-up provision. This can be seen in equation (14b), where the 

LHS of the equality is independent of α, while the RHS is decreasing in α. Intuitively, all else equal, and for a 
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given catch-up rate, ξ, higher-skill GPs stand a greater chance of recovering the preferred equity payout than 

lower-skill GPs, which reduces the cost of equity capital to reduce leverage. Compounding this relation, 

however, is that higher-skill GPs are also in a better position to implement higher catch-up rates, with fund 

leverage increasing in ξ (again see equation (14b)). 

The following corollary now states two useful relations that will aid in subsequent analysis. 

Corollary to Proposition 4: 𝝏𝝏𝚽𝚽𝑪𝑪𝑪𝑪
𝑽𝑽

𝝏𝝏𝝏𝝏
> 𝟎𝟎 and 𝝏𝝏𝝏𝝏

𝝏𝝏𝝏𝝏
< 𝟎𝟎. In particular, 𝝏𝝏𝚽𝚽𝑪𝑪𝑪𝑪

𝑽𝑽

𝝏𝝏𝝏𝝏
= 𝑽𝑽𝟎𝟎𝒆𝒆(𝝁𝝁+𝜶𝜶)𝑻𝑻�𝑵𝑵[𝒉𝒉𝟏𝟏] −𝑵𝑵[𝒎𝒎𝟏𝟏]� −

𝝌𝝌𝟎𝟎�𝑵𝑵[𝒉𝒉𝟐𝟐] −𝑵𝑵[𝒎𝒎𝟐𝟐]� and 𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

=
−𝝏𝝏𝚽𝚽𝑪𝑪𝑪𝑪

𝑽𝑽

𝝏𝝏𝝏𝝏

𝑻𝑻�ℰ𝑇𝑇−Φ𝐶𝐶𝐶𝐶
𝑉𝑉 �

.  

Proof: See Appendix A. 

Like the effect of the carried interest share, ρ, GP incentive fees are increasing in the catch-up rate, ξ.  And like 

the carried interest share, the catch-up rate is capped at one. But the effects at the upper bound differ 

substantially. The carried interest share is a rather blunt incentive compensation instrument, where higher shares 

extract profits in a clear, linearly homogeneous manner, and in the limit (ρ=1) take all profits in excess of the 

preferred interest payout. The effects of the catch-up rate are, in contrast, more subtle and less substantial. A 

catch-up rate of one is only in effect within a given range of profits, with profit sharing reverting back to the 

carried interest share after “excess” preferred interest payouts are recovered by the GP. Thus, the effect of 𝜉𝜉 =

1.0 (which is often quoted in the general PE literature) is not as extreme as it is for ρ=1.0 (which is never 

observed in practice). As for the complementary comparative static, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, what is good for GP fees is bad for LP 

net-of-fee return. Hence 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

< 0. 

Analysis in this sub-section has not yet imposed the constraint that the GP meet the LP’s return and fund 

leverage target. To do so I specify the following constrained optimization problem: 

  𝑀𝑀𝑀𝑀𝑀𝑀
𝐵𝐵,𝜉𝜉

 Φ𝐶𝐶𝐶𝐶
𝑉𝑉 (𝐵𝐵, 𝜉𝜉;𝜓𝜓,𝜌𝜌) = 𝜉𝜉 �𝑉𝑉0𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑇𝑇𝑁𝑁[ℎ1] − 𝜒𝜒0𝑁𝑁[ℎ2]� 

 −(𝜉𝜉 − 𝜌𝜌) �𝑉𝑉0𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑇𝑇𝑁𝑁[𝑚𝑚1] − Χ0𝑁𝑁[𝑚𝑚2]� (15) 
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 s.t. 0 ≤ 𝐷𝐷0(𝐵𝐵) ≤ 𝐷𝐷�0, 𝜆𝜆𝐶𝐶𝐶𝐶𝑁𝑁 (𝐵𝐵,𝜌𝜌) ≥ 𝜆𝜆∗, 𝜌𝜌 < 𝜉𝜉 ≤ 1.0 (15a) 

     

In this case the catch-up rate in addition to fund leverage is endogenously determined, with baseline contract 

parameters ψ and ρ taken as given (as is generally the case in practice). 

There are four cases to consider in solving the problem, all of which depend critically on GP skill level, α. The 

first case requires identifying a bound for alpha, 𝛼̇𝛼, such that low-skill GPs endowed with 𝛼𝛼 ≤ 𝛼̇𝛼 are unable to 

implement the catch-up fee provision. The second case considers moderately skilled GPs that are capable of 

implementing the catch-up fee contract, but not skilled enough to implement a full catch-up fee contract with 

𝜉𝜉 = 1.0. This requires finding an additional bound, 𝛼̈𝛼 > 𝛼̇𝛼, such that at 𝛼𝛼 = 𝛼̈𝛼 full catch-up is just feasible. In 

this range an intermediate catch-up rate of 𝜌𝜌 < 𝜉𝜉 < 1.0 obtains that varies directly with alpha. The third case is 

that of a highly skilled GP endowed with 𝛼𝛼, 𝛼̈𝛼 ≤ 𝛼𝛼 < 𝛼𝛼. In this range the GP is able to implement the full catch-

up fee contract while also meeting the target return constraint. Fund leverage is less than the targeted upper 

bound, however. Finally, in the fourth case the GP is endowed with extreme skill, with 𝛼𝛼 ≥ 𝛼𝛼, such that the debt 

lower bound of B=0 is binding. It turns out that alpha levels in this range far exceed those that fit the calibrated 

data.25 As a consequence, although this fourth case is feasible in theory, I will not pursue it any further.  

To solve (15) I form the Lagrangian, with KKT conditions as follows: 

 ℒ(𝐵𝐵, 𝜉𝜉) = −Φ𝑉𝑉(𝜌𝜌,𝐵𝐵;𝜓𝜓) + 𝜇𝜇1�𝜆𝜆∗ − 𝜆𝜆𝑁𝑁(𝐵𝐵,𝜌𝜌)� + 𝜇𝜇2(𝐷𝐷0(𝐵𝐵) − 𝐷𝐷�0) + 𝜇𝜇3(𝜉𝜉 − 1) (16) 

and where 𝜇𝜇1, 𝜇𝜇2,𝜇𝜇3 ≥ 0 denote Lagrange multipliers.  

Prior to stating solutions to the constrained optimization problem it is also useful to recall the following relation: 

 𝛷𝛷𝐶𝐶𝐶𝐶𝑉𝑉 = ℰ𝑇𝑇 − 𝑒𝑒𝜆𝜆∗𝑇𝑇[𝐸𝐸0 + 𝛷𝛷𝐹𝐹] (7a) 

                                                           
25 Using base case parameter values I find that 𝛼𝛼 = .111 for B to hit a lower bound of zero, which is a value that far 
exceeds GP skill levels implied in the PERE data. 
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This is simply a rearrangement of equation (7), along with constraining 𝜆𝜆𝑁𝑁 to equal 𝜆𝜆∗. This relation will be used 

to locate solutions when analyzing KKT conditions according to equation (16).  

With this, I am now in a position to state the constrained efficient solution to the catch-up fee contracting 

problem. 

Proposition 5 (The Constrained Catch-Up Fee Contracting Problem): For empirically-based parameter 

value ranges established previously, there are three solution ranges to consider. To bracket the solution 

ranges, let 𝜶̇𝜶 be that 𝜶𝜶 > 𝟎𝟎 with 𝝀𝝀 = 𝝀𝝀∗ and 𝑫𝑫𝟎𝟎 = 𝑫𝑫�𝟎𝟎 given 𝝃𝝃 = 𝝆𝝆, and let 𝜶̈𝜶 be that 𝜶𝜶 > 𝜶̇𝜶 at which 𝝀𝝀 = 𝝀𝝀∗ 

and 𝑫𝑫𝟎𝟎 = 𝑫𝑫�𝟎𝟎 given 𝝃𝝃 = 𝟏𝟏.𝟎𝟎. The contracting solution ranges are as follows: 1) When 𝜶𝜶 < 𝜶̇𝜶, no catch-up 

provision is included the incentive contract; 2) When 𝜶̇𝜶 ≤ 𝜶𝜶 < 𝜶̈𝜶, both the target return and fund 

leverage constraints bind, with ξ chosen to satisfy equation (7a); 3) When 𝜶𝜶 ≥ 𝜶̈𝜶,  full catch-up 𝝃𝝃 = 𝟏𝟏.𝟎𝟎 is 

implemented, along with 𝝀𝝀 = 𝝀𝝀∗. 𝑫𝑫𝟎𝟎(𝑩𝑩) < 𝑫𝑫�𝟎𝟎 is chosen to satisfy equation (7a).  

Proof: See Appendix A. 

For 𝛼𝛼 ≤ 𝛼̇𝛼 there is no 𝜉𝜉 > 𝜌𝜌 that can simultaneously satisfy the target return and fund leverage constraints for 

the given ψ and ρ, while also resulting in GP incentive fees that are positive in expectation. Implicit in this result 

is that, for empirically-based parameter values established previously, and because 𝛼𝛼 > 0, LP returns are 

increasing in fund leverage at the fund leverage constraint. This causes the low-skill LP to lever the fund up to 

the 𝐷𝐷0 = 𝐷𝐷�0 constraint in a (failed) attempt to meet the LP’s return target.  

In all cases for which the catch-up fee provision is implementable, constrained optimal GP incentive fees are 

determined as a two-part tariff. For 𝛼̇𝛼 ≤ 𝛼𝛼 < 𝛼̈𝛼, the GP optimizes incentive fees by setting 𝐷𝐷0 = 𝐷𝐷�0, and then 

using equation (7a) to find the catch-up rate, 𝜉𝜉, to meet the LP’s return target. The GP optimizes over the catch-

up rate rather than fund leverage, since the LP’s return target is more sensitive to reductions in fund leverage 

than it is to increases in the catch-up rate. In this case the Lagrange multipliers are of the exact same form as in 

the baseline contracting case, except now incentive fees paid to the GP incorporate the fee-increasing effects of 

the catch-up provision. This augmented contract, which reduces fund leveraging incentives of the GP, has the 

effect of reducing shadow costs at both the return target and fund leverage constraint. For 𝛼𝛼 ≥ 𝛼̈𝛼, the catch-up 

rate binds at 𝜉𝜉 = 1.0. Here the GP finds 𝐷𝐷0(𝐵𝐵) < 𝐷𝐷�0 that satisfies (7a). Because fund leverage moves inversely 
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with α, the GP reduces leverage to increase fees. This decreases LP returns, with the GP reducing fund leverage 

to the point at which λN=λ*. 

For the empirically calibrated parameter values used herein, the target return constraint will always be binding. 

Meeting this return constraint causes the GP to implement fund leverage that is higher than preferred in the 

absence of the constraint. Simultaneously satisfying GP incentive compatibility and LP benchmark return 

requirements was feasible in the baseline contract case due to separation between ψ and ρ. Separation is lost 

when the catch-up provision is added, however. 

Note that ex post leverage shading incentives exist when 𝛼𝛼 ≥ 𝛼̈𝛼. This is due to the inverse relation between GP 

incentive compatible fund leverage choice and skill when implementing the catch-up contract. When the LP 

recognizes this effect, it may seek a hard fund leverage target to establish credible commitment on the part of the 

GP.  

Consider now calibrated modeling results using base-case parameter values, along with the previously identified 

target return of λ*=.1672 and target fund leverage of 𝐷𝐷�0=65.00. With these values, from equation (7a) it 

immediately follows that 𝛼̇𝛼 = .0183 and 𝛼̈𝛼 = .0258. As a result I will examine GP skill levels with alpha equal 

to or exceeding 2.0%, as the catch-up fee contract is not implementable for 𝛼𝛼 ≤ .0183.  Table 7 reports the 

constrained efficient fund capital structure and incentive fee results for GP’s endowed with varying skill levels, 

along with several other contracting scenarios.  

GP alpha values of .020 to .040 are seen across the top of the table. Four contracting cases are examined, as 

identified in panels A through D. In all cases, ψ=.09 and ρ=.20. For each case, four quantities are calculated: 1) 

The catch-up rate, 𝜉𝜉; 2) Fund leverage, 𝐷𝐷0(𝐵𝐵); 3) GP incentive fees, Φ𝐶𝐶𝐶𝐶
𝑉𝑉 ; and 4) LP return, 𝜆𝜆𝐶𝐶𝐶𝐶𝑁𝑁 . To establish a 

benchmark, panel A considers the baseline contract without a catch-up fee provision and with a soft leverage 

constraint, 𝐷𝐷0(𝐵𝐵) ≤ 𝐷𝐷�0. Panel B presents the constrained efficient catch-up fee contracting outcome based on 

the application of proposition 5. This case corresponds to there being a soft fund leverage constraint, 𝐷𝐷0(𝐵𝐵) ≤

𝐷𝐷�0 . Panel C considers the case in which the LP negotiates for a hard leverage constraint, which, given 

parameter values applied herein, discourages GP opportunism and in certain cases increases LP returns relative 
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to the soft constraint case. Lastly, panel D recognizes additional LP bargaining power. Here the LP retains the 

hard fund leverage constraint, and further negotiates a lower catch-up rate than the rate the GP prefers through  

Table 7 

Catch-Up with LP Return and Fund Leverage Targeting 

Line Item α=.02 α=.025 α=.03 α=.04 
Panel A 

Baseline Contract: ψ.09, ρ=.20  
(Soft Leverage Target) 

    

ξ 
𝐷𝐷0 = 𝐷𝐷�0 
Φ𝑉𝑉 
𝜆𝜆𝑁𝑁  

-- 
63.09 
14.54 
.1674 

-- 
65.00 
15.78 
.1790 

-- 
65.00 
17.07 
.1873 

-- 
65.00 
19.76 
.2029 

Panel B 
Catch-Up Contract:  

Constrained Efficient Implementation by GP 
ξ 
𝐷𝐷0 
Φ𝐶𝐶𝐶𝐶
𝑉𝑉  

𝜆𝜆𝐶𝐶𝐶𝐶𝑁𝑁  

 
 
 

.228 
65.00 
16.54 
.1672 

 
 
 

.480 
65.00 
23.79 
.1672 

 
 
 

1.0 
61.57 
27.00 
.1672 

 
 
 

1.0 
54.48 
31.40 
.1672 

Panel C 
Catch-Up Contract:  

Hard Leverage Target 
ξ 

𝐷𝐷0 = 𝐷𝐷�0 
Φ𝐶𝐶𝐶𝐶
𝑉𝑉  

𝜆𝜆𝐶𝐶𝐶𝐶𝑁𝑁  

 
 
 

.228 
65.00 
16.54 
.1672 

 
 
 

.480 
65.00 
23.79 
.1672 

 
 
 

1.0 
65.00 
26.28 
.1744 

 
 
 

1.0 
65.00 
29.53 
.1904 

Panel D 
Catch-Up Contract:  

LP with Additional Bargaining Power 
ξ 
𝐷𝐷0 
Φ𝐶𝐶𝐶𝐶
𝑉𝑉  

𝜆𝜆𝐶𝐶𝐶𝐶𝑁𝑁  

 
 
 

-- 
65.00 
14.52 
.1703 

 
 
 

.300 
65.00 
21.62 
.1705 

 
 
 

.500 
65.00 
25.52 
.1755 

 
 
 

.750 
65.00 
29.40 
.1906 

Notes: Various quantities are displayed for alphas that range between .020 and .040. Each panel contains four quantities: i) Catch-
up rate, ξ; ii) Fund leverage, 𝐷𝐷0; iii) GP incentive fees, Φ𝐶𝐶𝐶𝐶

𝑉𝑉 ; and iv) LP net-of-fee return, 𝜆𝜆𝐶𝐶𝐶𝐶𝑁𝑁 .  Panels differ by details of the fund 
offering documents. Panel A considers the baseline incentive contract; Panel B considers the augmented contract with a catch-up 
fee provision along with a soft leverage constraint; Panel C considers the augmented contract with a catch-up fee provision along 
with a hard leverage constraint; Panel D considers the augmented contract with a catch-up fee provision, a hard leverage constraint, 
and a catch-up rate set by the LP. Base case parameter values are: V0=100; r=.02 : μ=.10; σ=.175; k=.30; T=6; ψ=.09, ρ=.20. 

 

its constrained optimization.  

In the baseline contracting case considered in panel A, GP incentive compatible fund leverage increases in α. 

Only when α=.02 does fund leverage decrease below the leverage target of 65.00. GP fees increase in α even 

though leverage is capped, due to increasing GP skill causing greater carried interest. Lastly, LP returns increase 
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in GP skill. With ψ and ρ fixed, given the baseline contract the GP has no other instruments with which to 

extract fees to decrease LP return. 

Panel B implements the constrained efficient contract as described in Proposition 5. Alpha equal to .02 or .025 

falls in the moderate-skill range, which according to Proposition 5 results in fund leverage at the cap of 𝐷𝐷�0 =

65.00. For both moderate alpha values, Lagrange multipliers μ1 and μ2 are confirmed to be positive, while μ3=0. 

Alpha equal to .03 or .04 falls in the high-skill range, which according to Proposition 5 results in fund leverage 

below the cap of 𝐷𝐷�0 = 65.00. Fund leverage of 61.57 and 54.48, respectively, are well within normal ranges 

seen in the PERE data (see Tables 2 and 3). Although the fund leverage constraint no longer binds in this high-

skill range, the catch-up rate does bind at 𝜉𝜉 = 1.0. Finally, note the substantial increase in GP incentive fees at 

all skill levels when moving from the baseline contract to the augmented catch-up fee contract. The increase in 

fees are particularly large – at about 60 percent – for the high-skill GPs that are in a position to impose the full 

catch-up rate and decrease fund leverage.  

Panel C is populated based on the assumption of a hard leverage contracting provision. The imposition of this 

provision affects only the high-skill GPs that prefer fund leverage below the target (as seen in Panel B). In these 

cases the increase in fund leverage benefits the LP, whose returns increase from the target of .1672, at the 

expense of GP incentive fees. The decrease in GP fees is not dramatic, however, particularly in the case of 

α=.03.  

Panel D is constructed assuming that the LP has some bargaining power that reduces the catch-up rate below the 

rate preferred by the GP. The catch-up rate reductions are fairly modest relative to the GP-preferred rates. A 

presumption of a hard fund leverage provision is also maintained. As seen in the table, these catch-up rate 

reductions do reduce incentive fees of moderately-skilled GPs by approximately 10 percent, while there is little 

impact on fees for the higher skill GPs. Analogous offsetting impacts are also noted in LP returns. 

In summary, I explain the catch-up fee provision as a mechanism utilized by higher-skill GPs to hit LP return 

targets without having to adjust the standard carried interest contract fee variables. Lower-skill GPs either utilize 

the standard baseline contract or exit the market. Catch-up fees vary directly with skill level, with GPs trading 
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off higher fund leverage, within the constrained range, in order to maximize the catch-up fee rate. This approach 

works in constrained equilibrium because, generally speaking, LP fund performance responds more to leverage 

than to changes in the catch-up rate. High-skill GPs negotiate for the maximum catch-up rate of 𝜉𝜉 = 1.0, and 

then decrease fund leverage because of the low cost of equity capital.  

Empirical predictions include: 1) Low-skill GPs are unable to negotiate catch-up fee contracts. This is seen in 

the PERE data, where a significant number of funds do not include catch-up fee provisions. For lower risk, 

lower alpha PERE funds such as core and core-plus, catch-up fee provisions are rarely included; 2) For 

moderately skilled GPs, fund leverage clusters at the target upper bound, with more variation in the catch-up 

rate that moves directly with GP skill. Leverage clustering along with significant variation in catch-up rates as 

described are clearly seen in the PERE data; 3) Higher-skill GPs cluster at the full catch-up rate, with an inverse 

relation between skill level and fund leverage. Consistent with the existence of limited alpha, few PERE funds 

implement the full catch-up rate and fund leverage levels are high at an average of over 63% and with an 

interquartile range of 60% to 70%.. This in contrast to PE buyout funds, where alpha estimates are higher, full 

catch-up fee rates are common, and fund leverage levels are lower on average, at 49%, with a relatively wide 

interquartile range of 37% to 62% (see, e.g., Brown, Harris and Munday (2021)).  

VII. Conclusion 

A model of closed-end PE fund capital structure is developed in this paper to explain the carried interest 

compensation contract. In the model, GP’s implement fund leverage to optimize incentive fees while also 

satisfying target return objectives of LP’s. To motivate the modeling, fee, leverage and target return data from 

private equity real estate funds are analyzed. Steps in the modeling process include developing a model of debt 

funding cost that pits alpha against costs of financial distress. Endogenous upper bounds on fund leverage are a 

byproduct of the model, where I show that GPs with convex carried interest payoff functions limit fund leverage 

even when financial distress costs are zero. Parameter values are selected after a thorough analysis and careful 

matching to the relevant data. Given standard incentive fee contracting terms, modeled capital structures closely 

match those observed empirically. To address the issue of GP skill heterogeneity the model is extended to 



~ 52 ~ 
 

consider catch-up fee provisions. I first endogenize LP return targeting preferences, and then show how such 

provisions arise endogenously as a mechanism that allows higher-skill GPs to extract higher fees while also 

satisfying LP return target constraints. 
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Appendix A 

Proofs to Propositions and Corollaries 

For all of the proofs subscripts are suppressed wherever doing so does not introduce any ambiguity into the 
meaning of the variables. 

Proof of Proposition 1: Starting with equation (1b), after doing some algebra and using the known formula for 

the standard normal pdf, I have that 𝜕𝜕𝐷𝐷0
𝜕𝜕𝜕𝜕

= 𝑒𝑒−𝑟𝑟𝑟𝑟 �𝑁𝑁[𝑑𝑑2] − 1
𝜎𝜎√2𝜋𝜋𝜋𝜋

𝑒𝑒−
1
2𝑑𝑑2

2
� + (1 − 𝑘𝑘)𝑉𝑉0𝑒𝑒𝛼𝛼𝛼𝛼 �

1
𝐵𝐵𝐵𝐵√𝑇𝑇√2𝜋𝜋

𝑒𝑒−
1
2𝑑𝑑1

2
�. From 

(1b'), 𝑑𝑑12 = 𝑑𝑑22 + 2𝑑𝑑2𝜎𝜎√𝑇𝑇 + 𝜎𝜎2𝑇𝑇. After substituting this into the prior equation, using the definition of 𝑑𝑑22 from 
(1b'), and after completing the squares in the exponents, I end up with 𝜕𝜕𝐷𝐷0

𝜕𝜕𝜕𝜕
= 𝑒𝑒−𝑟𝑟𝑟𝑟 �𝑁𝑁[𝑑𝑑2] − 1

𝜎𝜎√𝑇𝑇
𝑛𝑛(𝑑𝑑2)� +

(1 − 𝑘𝑘)𝑒𝑒−𝑟𝑟𝑟𝑟 1
𝜎𝜎√𝑇𝑇

𝑛𝑛(𝑑𝑑2) = 𝑒𝑒−𝑟𝑟𝑟𝑟 �𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑇𝑇

�.  

To prove the existence and uniqueness of a finite 𝐵𝐵𝑘𝑘∗ when k>0 that satisfies 𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑇𝑇

= 0, I note 

that 𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑇𝑇

 is everywhere continuous, 𝑁𝑁[𝑑𝑑2] − 𝑘𝑘
𝜎𝜎√𝑇𝑇

𝑛𝑛(𝑑𝑑2) = 1 for B=0 and that 𝑁𝑁[𝑑𝑑2] −
𝑘𝑘

𝜎𝜎√𝑇𝑇
𝑛𝑛(𝑑𝑑2) → 0 as 𝐵𝐵 → ∞. Now I claim that 𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘

𝜎𝜎√𝑇𝑇
→ 0 from below (i.e., the quantity is negative 

for B large). For this to be true, 𝑘𝑘
𝜎𝜎√𝑇𝑇

> 𝑁𝑁[𝑑𝑑2]
𝑛𝑛(𝑑𝑑2) for any k>0 as B gets large. Applying L’Hospital’s rule to the RHS 

of the inequality shows that it goes to zero in the limit, confirming that 𝑁𝑁[𝑑𝑑2] − 𝑘𝑘
𝜎𝜎√𝑇𝑇

𝑛𝑛(𝑑𝑑2) → 0 from below. 

Next, take the derivative of 𝑁𝑁[𝑑𝑑2] − 𝑘𝑘
𝜎𝜎√𝑇𝑇

𝑛𝑛(𝑑𝑑2) with respect to B, which results in 𝑛𝑛(𝑑𝑑2) 𝜕𝜕𝑑𝑑2
𝜕𝜕𝜕𝜕

�1 + 𝑑𝑑2
𝑘𝑘

𝜎𝜎√𝑇𝑇
�. The 

terms outside the bracket together are negative. The term inside the bracket is initially positive for B small and 
then eventually turns negative for some B sufficiently large. This implies that the slope of 𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘

𝜎𝜎√𝑇𝑇
 is 

initially negative as a function of B, but then turns positive for some unique B sufficiently large, and then stays 
positive thereafter. This is all that is needed for existence and uniqueness of 𝐵𝐵𝑘𝑘∗, since, for the above collection 
of facts to be true, it must be the case that there is a single crossing at zero in which there is one and only one B 
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for which 𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑇𝑇

= 0. Finally, given these facts, in the range of 𝐵𝐵 ∈ [0,𝐵𝐵𝑘𝑘∗) it immediately follows 

that 𝜕𝜕𝐷𝐷0
𝜕𝜕𝜕𝜕

> 0 and 𝜕𝜕
2𝐷𝐷0
𝜕𝜕𝐵𝐵2

< 0 when k>0. QED 

Proof of Proposition 2: From equation (2b) the FOC is:  𝜕𝜕Φ
𝑉𝑉

𝜕𝜕𝜕𝜕
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𝜕𝜕𝜕𝜕
� = 0. Recalling that 𝜒𝜒0 = 𝐵𝐵 + (𝑉𝑉0 − 𝐷𝐷0)𝑒𝑒𝜓𝜓𝜓𝜓, it follows that 𝜕𝜕𝜒𝜒0
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𝑛𝑛(𝑑𝑑2)�, ψ ≥ r. Subbing this into the FOC and utilizing results from proposition 1, as well as well-known 

comparative static relations for call options with respect to B (the exercise price), the FOC simplifies to 𝜕𝜕Φ
𝑉𝑉

𝜕𝜕𝜕𝜕
=

−𝜌𝜌𝜌𝜌[ℎ2] �1 − 𝑒𝑒(𝜓𝜓−𝑟𝑟)𝑇𝑇 �𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑇𝑇

�� = 0. For ρ>0 the FOC comes down to equating the terms inside 

the brackets to zero. Existence and uniqueness follow based on the same logic spelled out in the proof to 
proposition 1. The lack of dependence on ρ is based on inspection of the FOC above. Finally, when ψ < r, 

inspection of 𝜕𝜕Φ
𝑉𝑉

𝜕𝜕𝜕𝜕
 reveals that an internal optimum does not exist. Inspection further reveals that ΦV is 

universally decreasing in B within the feasible range, implying B*=0. QED 

Proof of Corollary 2 to Proposition 2: 𝜓𝜓 = 𝑟𝑟 − 1
𝑇𝑇
𝑙𝑙𝑙𝑙 �𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘

𝜎𝜎√𝑇𝑇
� follows directly from the FOC 

derived for proposition 2. I will refer to this relation repeatedly to derive the comparative static results. The 

comparative static 𝜕𝜕𝐵𝐵
∗

𝜕𝜕𝜕𝜕
> 0 follows from 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
> 0 in the above functional relation, since 𝑁𝑁[𝑑𝑑2] − 𝑘𝑘

𝜎𝜎√𝑇𝑇
𝑛𝑛(𝑑𝑑2)>0 

and the derivative of this quantity is negative, per the proof of proposition 1. I will use the fact that 𝜕𝜕𝐵𝐵
∗

𝜕𝜕𝜕𝜕
> 0 and 

implicit differentiation to generate the other stated comparative static relations. In the case of 𝜕𝜕𝐵𝐵
∗

𝜕𝜕𝜕𝜕
, inspection of 

the above relation reveals that 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

> 0, implying that 𝜕𝜕𝐵𝐵
∗

𝜕𝜕𝜕𝜕
< 0.  In the case of 𝜕𝜕𝐵𝐵

∗

𝜕𝜕𝜕𝜕
,  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 is seen to be negative, 

implying that 𝜕𝜕𝐵𝐵
∗

𝜕𝜕𝜕𝜕
> 0. For the cases of 𝜕𝜕𝐵𝐵

∗

𝜕𝜕𝜕𝜕
, 𝜕𝜕𝐵𝐵∗

𝜕𝜕𝜕𝜕
 and 𝜕𝜕𝐵𝐵

∗

𝜕𝜕𝜕𝜕
 , after quite a bit of tedious algebra I am unable to sign 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. This in turn implies that I am unable to sign 𝜕𝜕𝐵𝐵
∗

𝜕𝜕𝜕𝜕
, 𝜕𝜕𝐵𝐵∗

𝜕𝜕𝜕𝜕
 and 𝜕𝜕𝐵𝐵

∗

𝜕𝜕𝜕𝜕
. QED 

Proof of Proposition 3: Given the Lagragian stated in (11), after examining necessary FOCs I find that, 

regardless of whether the fund leverage constraint is binding, 𝜇𝜇1 =
−𝜕𝜕Φ𝑉𝑉

𝜕𝜕𝜕𝜕
−𝜕𝜕Φ𝑉𝑉
𝜕𝜕𝜕𝜕 �1𝑇𝑇��

1
𝜀𝜀𝑇𝑇−Φ𝑉𝑉

�
= 𝑇𝑇[ℰ𝑇𝑇 − Φ𝑉𝑉] > 0. This 

implies that the fund target return constraint always binds. As a result, one finds 𝜌̅𝜌 > 0 as defined in equation 
(10), where positive 𝜌̅𝜌 is necessary to satisfy GP participation. With 𝜇𝜇1, in the case of a binding fund leverage 

constraint, after some algebra I obtain 𝜇𝜇2 = 1
𝜕𝜕𝐷𝐷0
𝜕𝜕𝜕𝜕

�𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝜕𝜕

− �ℰ𝑇𝑇−Φ
𝑉𝑉

𝐸𝐸0+Φ𝐹𝐹�
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕
�. The term inside the bracket must be 

verified to be positive for 𝜇𝜇2 > 0. When 𝜇𝜇2 > 0 it must be that 
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕
𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝜕𝜕

> 𝐸𝐸0+Φ𝐹𝐹

ℰ𝑇𝑇−Φ𝑉𝑉. Recalling equation (7), this 

inequality implies that 
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕
𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝜕𝜕

> 𝑒𝑒−𝜆𝜆∗𝑇𝑇. Also, GP participation vis-à-vis equation (10) implies that ℰ𝑇𝑇 −

[𝐸𝐸0 + Φ𝐹𝐹]𝑒𝑒𝜆𝜆∗𝑇𝑇 > 0, which in turn implies that 𝑒𝑒−𝜆𝜆∗𝑇𝑇 > 𝐸𝐸0+Φ𝐹𝐹

ℰ𝑇𝑇
. Altogether we have that 𝐸𝐸0+Φ

𝐹𝐹

ℰ𝑇𝑇
< 𝑒𝑒−𝜆𝜆∗𝑇𝑇 <  

𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕
𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝜕𝜕
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when 𝜇𝜇2 > 0 and GP participation is satisfied as stated in the proposition. Furthermore, 𝐸𝐸0+Φ
𝐹𝐹

ℰ𝑇𝑇
< 𝑒𝑒−𝜆𝜆∗𝑇𝑇 <  

𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕
𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝜕𝜕

 

implies 𝜇𝜇2 > 0. All terms are independent of ψ, as claimed. QED 

Proof of Proposition 4: As a first step it is useful to write out the 𝜕𝜕Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝜕𝜕𝐵𝐵
 , which can be expressed as 𝜕𝜕Φ𝐶𝐶𝐶𝐶

𝑉𝑉

𝜕𝜕𝜕𝜕
=

𝜉𝜉[𝑁𝑁(𝑚𝑚2) −𝑁𝑁(ℎ2)] �1 − 𝑒𝑒(𝜓𝜓−𝑟𝑟)𝑇𝑇 �𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑇𝑇

�� − 𝜌𝜌𝜌𝜌(𝑚𝑚2). Note that the bracketed term to the far left 

is always negative in the relevant range for B, as is the last term. When the larger bracketed term (that also 

contains the choke condition term) is positive, then 𝜕𝜕Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝜕𝜕𝜕𝜕
< 0. This is always true when ψ≤r, and holds for all 

B≥0. It follows because 𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑇𝑇

= 1 at B=0, which then decreases in the feasible range 𝐵𝐵 ∈ [0,𝐵𝐵𝑘𝑘∗]. 

In this case 𝐵𝐵𝐶𝐶𝐶𝐶∗ = 0 as claimed. In the case of ψ>r and 1 − 𝑒𝑒(𝜓𝜓−𝑟𝑟)𝑇𝑇 ≥ 𝜌𝜌𝜌𝜌[𝑚𝑚2]
𝜉𝜉�𝑁𝑁[𝑚𝑚2]−𝑁𝑁[ℎ2]�

 at B=0, inspection of  

𝜕𝜕Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝜕𝜕𝜕𝜕
 above reveals that  𝜕𝜕Φ𝐶𝐶𝐶𝐶

𝑉𝑉

𝜕𝜕𝜕𝜕
< 0 for all B≥0, implying that 𝐵𝐵𝐶𝐶𝐶𝐶∗ = 0 in this case as well. Lastly, in the case of 

ψ>r and 1 − 𝑒𝑒(𝜓𝜓−𝑟𝑟)𝑇𝑇 < 𝜌𝜌𝜌𝜌[𝑚𝑚2]
𝜉𝜉�𝑁𝑁[𝑚𝑚2]−𝑁𝑁[ℎ2]�

 at B=0, inspection of  𝜕𝜕Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝜕𝜕𝜕𝜕
 above shows that the larger bracketed term is 

negative and that 𝜕𝜕Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝜕𝜕𝜕𝜕
> 0 at B=0. Now, because the RHS of the FOC expressed in equation (14b) is always 

negative, and because the LHS of (14b) is increasing in B, there will exist a 𝐵𝐵𝐶𝐶𝐶𝐶∗ <B* that satisfies the FOC 
written in (14b). QED 

Proof of Corollary to Proposition 4: After differentiating Φ𝐶𝐶𝐶𝐶
𝑉𝑉  with respect to 𝜉𝜉 and doing some algebra, I 

obtain 𝜕𝜕Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝜕𝜕𝜕𝜕
= �𝑉𝑉0𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑇𝑇𝑁𝑁[ℎ1]− 𝜒𝜒0𝑁𝑁[ℎ2]� − �𝑉𝑉0𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑇𝑇𝑁𝑁[𝑚𝑚1] − 𝜒𝜒0𝑁𝑁[𝑚𝑚ℎ2]�, which can be re-expressed as 

∫ (𝑉𝑉𝑇𝑇 − 𝜒𝜒0)𝑓𝑓(𝑉𝑉𝑇𝑇)𝑑𝑑𝑉𝑉𝑇𝑇
Χ0
𝜒𝜒0

> 0 given that 𝜒𝜒0 < Χ0. As for 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, differentiate lambda as defined in equation (8) with 

respect to 𝜉𝜉, noting that only Φ𝐶𝐶𝐶𝐶
𝑉𝑉  depends on 𝜉𝜉. QED 

Proof of Proposition 5: From the corollary to proposition 4, GP fees increase in the catch-up rate, while LP 
return decreases. Also, for parameter values considered herein, LP returns increase in fund leverage at and 
below the fund leverage constraint. Altogether this implies that there exists a minimum 𝛼̇𝛼 > 0 at which 𝜉𝜉 = 𝜌𝜌 
with 𝜆𝜆 = 𝜆𝜆∗ and 𝐷𝐷0 = 𝐷𝐷�0. Because LP return increases in α, any 𝛼𝛼 ≤ 𝛼̇𝛼 implies that the catch-up fee provision 
cannot be implemented with 𝜉𝜉 > 𝜌𝜌 while simultaneously satisfying the target return and fund leverage 
constraints. This establishes the lower range of α’s.  

Next, I will identify an 𝛼̈𝛼 > 𝛼̇𝛼 such that 𝜉𝜉 = 1.0 with 𝜆𝜆 = 𝜆𝜆∗ and 𝐷𝐷0 = 𝐷𝐷�0. This establishes an upper bound for 
the middle range of α’s. I now claim that for 𝛼̇𝛼 < 𝛼𝛼 < 𝛼̈𝛼, the target return and fund leverage constraints bind 
with 𝜉𝜉 chosen to satisfy equation (7a). This claim requires that μ1,μ2>0 for there to be a constrained optimum. 
After examining FOCs that follow from equation (12), I find 𝜇𝜇1 = 𝑇𝑇[ℰ𝑇𝑇 − Φ𝐶𝐶𝐶𝐶

𝑉𝑉 ] > 0 and 𝜇𝜇2 =
1

𝜕𝜕𝐷𝐷0
𝜕𝜕𝐵𝐵

�𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝜕𝜕

− �ℰ𝑇𝑇−Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝐸𝐸0+Φ𝐹𝐹 �
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕
�. These are precisely the same conditions that are required to hold in the constrained 

baseline contract problem characterized in proposition 3, where the only difference is that I am optimizing the 
expanded contract with respect to the catch-up rate, 𝜉𝜉, instead of the baseline contract with respect to the carry 
share percentage, 𝜌𝜌. 𝜇𝜇1 is seen to be always positive, while the bracketed term of 𝜇𝜇2 must be verified as positive 
given the parameter set in question.  

Lastly, 𝛼𝛼 ≥ 𝛼̈𝛼 defines the higher range of α’s. In this case I claim that the target return and full catch rate 
constraints bind. Here 𝐷𝐷0 is positive but less than 𝐷𝐷�0, with 𝐷𝐷0 determined by (7a). For this claim to hold, I must 
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verify that μ1,μ3>0. Solving the constrained optimization problem in (12) generates that 𝜇𝜇1 =
−𝜕𝜕Φ𝐶𝐶𝐶𝐶

𝑉𝑉

𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆𝑁𝑁
𝜕𝜕𝜕𝜕

 and 𝜇𝜇3 =

𝜕𝜕Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝜕𝜕𝜕𝜕
�1− 𝜇𝜇1

𝑇𝑇�ℰ𝑇𝑇−Φ𝐶𝐶𝐶𝐶
𝑉𝑉 �
�. These KKT conditions are verified to hold for empirically supported parameter ranges 

applied herein. QED 

 

 

Appendix B 

Alternative Model of Private Equity Fundraising 

 

With the alternative fundraising model, I fix 𝐸𝐸0 = 𝐸𝐸�0 and ask how large V0 should be given that debt finances all 
fund acquisitions in excess of 𝐸𝐸�0. Consequently, the PE fundraising game now has two independent stages, with 
equity fundraising coming in the first stage and optimal fund size determination based on debt financing in the 
second stage. 

This approach to fundraising complicates debt valuation, because debt is now self-referencing. That is, 𝐷𝐷�0 =

𝑒𝑒−𝑟𝑟𝑟𝑟𝐵𝐵𝐵𝐵�𝑑̆𝑑2� + (1 − 𝑘𝑘)𝑉𝑉�0𝑒𝑒𝛼𝛼𝛼𝛼𝑁𝑁�−𝑑̆𝑑1� as before, with 𝑑̆𝑑1 =
𝑙𝑙𝑙𝑙�𝑉𝑉

�0
𝐵𝐵� �+�(𝑟𝑟+𝛼𝛼)+12𝜎𝜎

2�𝑇𝑇

𝜎𝜎√𝑇𝑇
 , 𝑑̆𝑑2 = 𝑑̆𝑑1 − 𝜎𝜎√𝑇𝑇. But now 

𝑉𝑉�0 = 𝐸𝐸�0 + 𝐷𝐷0 and 𝐷𝐷�0 = 𝐷𝐷0 are imposed as constraints. I note that 𝐷𝐷�0 is well-behaved (continuous and 
increasing) as it depends on B for 𝐵𝐵 ∈ [0,𝐵𝐵𝑘𝑘∗).  

Taking the total derivative of 𝐷𝐷�0 with respect to B, I obtain 𝑑𝑑𝐷𝐷
�0
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝐷𝐷�0
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝐷𝐷�0
𝜕𝜕𝑉𝑉�0

𝜕𝜕𝑉𝑉�0
𝜕𝜕𝜕𝜕

. Since 𝑉𝑉�0 = 𝐸𝐸�0 + 𝐷𝐷0 and 𝐷𝐷�0 =

𝐷𝐷0,  𝑑𝑑𝐷𝐷
�0
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝑉𝑉�0
𝜕𝜕𝜕𝜕

 and the total derivative can be rewritten as 𝑑𝑑𝐷𝐷
�0
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝐷𝐷0
𝜕𝜕𝜕𝜕

�1 + 𝜕𝜕𝐷𝐷�0
𝜕𝜕𝑉𝑉�0

�. Since 𝑉𝑉�0 = 𝐸𝐸�0 + 𝐷𝐷0, it is clear 

that 𝜕𝜕𝐷𝐷
�0

𝜕𝜕𝑉𝑉0
> 0 in the relevant range for B. In particular, 𝜕𝜕𝐷𝐷

�0
𝜕𝜕𝑉𝑉0

= (1 − 𝑘𝑘)𝑁𝑁�−𝑑̆𝑑1� + 𝑛𝑛�𝑑̆𝑑1�
𝑘𝑘

𝜎𝜎√𝑇𝑇
> 0. Thus, not only is 

𝑑𝑑𝐷𝐷�0
𝑑𝑑𝐵𝐵

 positive, but 𝑑𝑑𝐷𝐷
�0
𝑑𝑑𝑑𝑑

> 𝜕𝜕𝐷𝐷0
𝜕𝜕𝜕𝜕

 for 𝐵𝐵 ∈ [0,𝐵𝐵𝑘𝑘∗). 

With this result I am now in a position to consider the GP’s problem of optimizing fund size as it depends on B. 
As before, the problem is stated as: 𝑀𝑀𝑀𝑀𝑀𝑀

𝐵𝐵
 Φ𝑉𝑉(𝐵𝐵;𝜓𝜓,𝜌𝜌) = 𝜌𝜌 �𝑉𝑉�0𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑇𝑇𝑁𝑁�ℎ�1� − 𝜒𝜒0𝑁𝑁�ℎ�2��, ℎ�1 =

𝑙𝑙𝑙𝑙�𝑉𝑉
�0 𝜒𝜒0� �+�(𝜇𝜇+𝛼𝛼)+12𝜎𝜎

2�𝑇𝑇

𝜎𝜎√𝑇𝑇
 , ℎ�2 = ℎ�1 − 𝜎𝜎√𝑇𝑇. Further, as above, 𝑉𝑉�0 is a function of B, with the previously imposed 

constraints applying. Evaluating incentive compatibility results in the following relation: 1
𝑑𝑑𝐷𝐷�0
𝑑𝑑𝑑𝑑

= 𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑇𝑇𝑁𝑁[ℎ�1]
𝑁𝑁�ℎ�2�

>

𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑇𝑇 > 𝑒𝑒𝜓𝜓𝜓𝜓 when 𝜇𝜇 + 𝛼𝛼 >ψ. A unique interior solution therefore exists when r<μ+α, which is always the 

case as long as μ>r and α≥0. Since 𝑑𝑑𝐷𝐷
�0
𝑑𝑑𝑑𝑑

> 𝜕𝜕𝐷𝐷0
𝜕𝜕𝜕𝜕

 for 𝐵𝐵 ∈ [0,𝐵𝐵𝑘𝑘∗), the marginal cost of debt in this case (LHS of 
above relation) is less than the marginal cost of debt with the baseline fundraising model. This implies that the 

optimal B is larger is this fundraising model whenever 𝜇𝜇 + 𝛼𝛼 >ψ. And since 𝑑𝑑𝐷𝐷
�0
𝑑𝑑𝑑𝑑

> 𝜕𝜕𝐷𝐷0
𝜕𝜕𝜕𝜕

, the optimal 𝐷𝐷�0 will also 

be larger than 𝐷𝐷0. Lastly, note that 𝐷𝐷�0 = 0 when 𝐷𝐷0 = 0, implying that the marginal cost of debt increases 
without bound as 𝐷𝐷0 approaches zero. This in turn implies that the optimal 𝐷𝐷�0 is finite and therefore fund size is 
finite. 


